如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.
(1)求证:△APC∽△COD;
(2)设AP=x,OD=y,试用含x的代数式表示y;
(3)试探索x为何值时,△ACD是一个等边三角形.
考点分析:
相关试题推荐
在下图中,直线l所对应的函数关系式为y=-

x+5,l与y轴交于点C,O为坐标原点.
(1)请直接写出线段OC的长;
(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.
①试求点D的坐标;
②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.
查看答案
如图,已知⊙O及⊙O外的一点P.
(1)求作:过点P的⊙O的切线;
(要求:作图要利用直尺和圆规,不写作法,但要保留作图痕迹)
(2)若⊙O的半径为2,OP=6,求切线长.
查看答案
如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的

倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
查看答案
某工厂中有若干个形状完全相同的直角三角形铁片余料,(如图),已知∠ACB=90°,AC=3,BC=4,现准备对两块铁片余料进行裁剪,方案如下:
方案一:如图1,裁出一个扇形,圆心为点C,并且与AB相切于点D.
方案二:如图2,裁出一个半圆,圆心O在BC上,并且与AB、AC相切于点D、C;

(1)分别计算以上两种方案裁剪下来的图形的面积,并把计算结果直接填在横线上.按照方案一裁出的扇形面积是______;按照方案二裁出的半圆的面积是______;
(2)写出按照方案二裁出的半圆面积的计算过程.
查看答案
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在

上时,求正方形与扇形不重合的面积.
查看答案