满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交...

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.
(1)求证:△ACF≌△ACG;
(2)若AF=4manfen5.com 满分网,求图中阴影部分的面积.

manfen5.com 满分网
(1)连接CD,OC.根据圆周角定理的推论求得ADC=∠B=60°,根据直径所对的圆周角是直角得AC⊥CD,则根据等角的余角相等得到∠ACG=∠ADC=60°,从而得到△OCD为正三角形,进一步求得∠ECD=30°,证明∠ACF=∠ACG=60°.最后根据AAS即可证明三角形全等; (2)结合图形,可以把阴影部分的面积转化为三角形COE的面积减去扇形OCD的面积.根据30°的直角三角形的性质即可求得OC、CE的长,从而求解. (1)证明:如图,连接CD,OC,则∠ADC=∠B=60°. ∵AD是圆的直径, ∴∠ACD=90° 又∵∠ADC=∠B=60° ∴∠CAD=30° ∵EF与圆相切, ∴∠FCA=∠ADC=60° ∴直角△ACF中,∠FAC=30°, ∴∠FAC=∠CAD, 又∵CG⊥AD,AF⊥EF ∴FC=CG 则在△ACF和△ACG中: ∴△ACF≌△ACG(AAS). (2)【解析】 在Rt△ACF中,∠ACF=60°,AF=4, ∴∠FAC=30°, ∴FC=AC, 设FC=x,则AC=2x, (2x)2-x2=(4)2, 解得:x=4, ∴CF=4. 在Rt△OCG中,∠COG=60°,CG=CF=4,得OC==. 在Rt△CEO中,OE=. 于是S阴影=S△CEO-S扇形COD==-=.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.
(1)求证:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.
(1)求证:AC=CP;
(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).
(参考数据:manfen5.com 满分网,π=3.14)

manfen5.com 满分网 查看答案
如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段manfen5.com 满分网线段DB,其中C,D在直线AB上.请你找出最短的行走路线,并求出这条路线的长度.(manfen5.com 满分网≈1.73,π≈3.14)

manfen5.com 满分网 查看答案
如图,以AB为直径的半圆O上有一点C,过A点作半圆的切线交BC的延长线于点D.
(1)求证:△ADC∽△BDA;
(2)过O点作AC的平行线OF分别交BC,manfen5.com 满分网于E、F两点,若BC=2manfen5.com 满分网,EF=1,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cmmanfen5.com 满分网,BC=40cm,请你作出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.