满分5 > 初中数学试题 >

在矩形ABCD中,已知AB=a,BC=b,P是边CD上异于点C、D的任意一点. ...

在矩形ABCD中,已知AB=a,BC=b,P是边CD上异于点C、D的任意一点.
(1)若a=2b,当点P在什么位置时,△APB与△BCP相似?(不必证明)
(2)若a≠2b,①判断以AB为直径的圆与直线CD的位置关系,并说明理由;②是否存在点P,使以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似?(不必证明)
(1)根据已知及相似三角形的判定方法可求得,P只能是CD的中点. (2)a≠2b,则有a>2b,a<2b,分情况讨论.根据圆心到直线的距离与圆的半径的大小关系可以判断以AB为直径的圆与直线CD的位置关系.要使△ABP与△ADP相似,因为在△ADP中,∠D=90°,则△ABP必定是直角三角形,根据直径所对的圆周角是直角,得出答案. 【解析】 (1)因为P在边CD上,则在△BCP中,必有∠C=90°,因为两三角形相似时,形状一定相同,故△APB必定是直角三角形,又P点异于C,D,所以∠ABP≠90°,∠BAP≠90°,只能∠APB=90°,此时P只能是CD的中点.(2分) (2)当a>2b时: ①以AB为直径的圆与直线CD相交(3分) 理由是:∵a>2b ∴b<a ∴AB的中点(圆心)到CD的距离b小于半径a ∴CD与圆相交.(4分) ②当点P为CD与圆的交点时,△ABP∽△PAD,即存在点P(两个),使以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似.(5分) 当a<2b时: 1AB为直径的圆与直线CD相离.(6分) 理由是:∵a<2b ∴b>a ∴AB的中点(圆心)到CD的距离b大于半径a ∴CD与圆相离(7分) ②由①可知,点P始终在圆外,△ABP始终为锐角三角形 ∴不存在点P,使得以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似.(9分)
复制答案
考点分析:
相关试题推荐
已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.
(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF=manfen5.com 满分网,求DE的长;
(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2manfen5.com 满分网.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
manfen5.com 满分网
查看答案
如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.
(1)求y与x的函数关系式;
(2)试讨论以P为圆心,半径长为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.

manfen5.com 满分网 查看答案
如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域manfen5.com 满分网与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
查看答案
在Rt△ABC中,已知∠C=90°,AC=3cm,BC=4cm.
(1)以C为圆心,r1=2cm,r2=2.4cm,r3=3cm为半径的圆与AB有怎样的位置关系?为什么?
(2)求以C为圆心,r2为半径的圆的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.