满分5 > 初中数学试题 >

已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重...

已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.
(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF=manfen5.com 满分网,求DE的长;
(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.
manfen5.com 满分网
(1)根据AF,AD的长可以求得DF的长,根据折叠知EF=AF,再根据勾股定理即可计算得到DE的长; (2)根据直角三角形的外接圆的圆心是斜边的中点,则折痕与AE的交点O即是其外接圆的圆心.设DE=x,根据三角形ADE的中位线定理求得OM=x,进一步表示出ON的长.根据直线和圆相切,则圆心到直线的距离等于圆的半径得到AE=2ON,在直角三角形ADE中,根据勾股定理列方程求解.再根据直角三角形FOE相似于直角三角形ADE,求得OF的长,从而根据轴对称的性质得到FG=2OF. 【解析】 (1)在矩形ABCD中,AB=2,AD=1,AF=,∠D=90°. 根据轴对称的性质,得EF=AF=. ∴DF=AD-AF=. 在Rt△DEF中,DE=.(3分) (2)设AE与FG的交点为O. 根据轴对称的性质,得AO=EO. 取AD的中点M,连接MO. 则MO=DE,MO∥DC. 设DE=x,则MO=x, 在矩形ABCD中,∠C=∠D=90°, ∴AE为△AED的外接圆的直径,O为圆心. 延长MO交BC于点N,则ON∥CD. ∴∠CNM=180°-∠C=90°. ∴ON⊥BC,四边形MNCD是矩形. ∴MN=CD=AB=2.∴ON=MN-MO=2-x. ∵△AED的外接圆与BC相切, ∴ON是△AED的外接圆的半径. ∴OE=ON=2-x,AE=2ON=4-x. 在Rt△AED中,AD2+DE2=AE2, ∴12+x2=(4-x)2. 解这个方程,得x=.(6分) ∴DE=,OE=2-x=. 根据轴对称的性质,得AE⊥FG. ∴∠FOE=∠D=90°.可得FO=. 又AB∥CD,∴∠EFO=∠AGO,∠FEO=∠GAO. ∴△FEO≌△GAO.∴FO=GO. ∴FG=2FO=. ∴折痕FG的长是.(9分)
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2manfen5.com 满分网.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
manfen5.com 满分网
查看答案
如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.
(1)求y与x的函数关系式;
(2)试讨论以P为圆心,半径长为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.

manfen5.com 满分网 查看答案
如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域manfen5.com 满分网与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
查看答案
在Rt△ABC中,已知∠C=90°,AC=3cm,BC=4cm.
(1)以C为圆心,r1=2cm,r2=2.4cm,r3=3cm为半径的圆与AB有怎样的位置关系?为什么?
(2)求以C为圆心,r2为半径的圆的面积.
查看答案
如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)当x=______时,PQ⊥AC,x=______时,PQ⊥AB;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.