满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.动点O在边CA上移动,...

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.动点O在边CA上移动,且⊙O的半径为2.
(1)若圆心O与点C重合,则⊙O与直线AB有怎样的位置关系?
(2)当OC等于多少时,⊙O与直线AB相切?

manfen5.com 满分网
(1)当圆心O与点C重合时,根据勾股定理求AB的长,利用“面积法”求点C到AB的距离,再与半径比较即可判断位置关系; (2)作ON⊥AB,使ON=2,利用相似三角形的性质可求此时OC的长. 【解析】 (1)作CM⊥AB,垂足为M 在Rt△ABC中,AB===5 ∵AC•BC=AB•CM ∴CM=∵>2 ∴⊙O与直线AB相离. (2)如图,设⊙O与AB相切,切点为N,连接ON 则ON⊥AB∴ON∥CM ∴△AON∽△ACM∴= 设OC=x,则AO=3-x ∴=∴x=0.5 ∴当CO=0.5时,⊙O与直线AB相切.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:
(1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______
(2)求BC的长.

manfen5.com 满分网 查看答案
在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.
(1)试判断三角形PBC的形状;
(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=manfen5.com 满分网S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);
(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.

manfen5.com 满分网 查看答案
已知一次函数y=x+2的图象分别交x轴,y轴于A、B两点,⊙O1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒manfen5.com 满分网个单位长度的速度沿A→B→A运动后停止;动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交y轴于E点,P、Q运动的时间为t(秒).
(1)直接写出E点的坐标和S△ABE的值;
(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O1有哪几种位置关系,并指出对应的运动时间t的范围;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t使得S△APQ:S△ABE=3:4?若存在,请确定t的值和直线PQ所对应的函数解析式;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.