满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、...

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

manfen5.com 满分网
(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同; (2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答. ②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形. 【解析】 (1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8). 将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得, 解得a=-,b=4. 故抛物线的解析式为:y=-x2+4x; (2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=. ∴PE=AP=t.PB=8-t. ∴点E的坐标为(4+t,8-t). ∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. ∴EG=-t2+8-(8-t)=-t2+t. ∵-<0,∴当t=4时,线段EG最长为2. ②共有三个时刻. (①)当EQ=QC时, 因为Q(8,t),E(4+t,8-t),QC=t, 所以根据两点间距离公式,得: (t-4)2+(8-2t)2=t2. 整理得13t2-144t+320=0, 解得t=或t==8(此时E、C重合,不能构成三角形,舍去). (②)当EC=CQ时, 因为E(4+t,8-t),C(8,0),QC=t, 所以根据两点间距离公式,得: (4+t-8)2+(8-t)2=t2. 整理得t2-80t+320=0,t=40-16,t=40+16>8(此时Q不在矩形的边上,舍去). (③)当EQ=EC时, 因为Q(8,t),E(4+t,8-t),C(8,0), 所以根据两点间距离公式,得:(t-4)2+(8-2t)2=(4+t-8)2+(8-t)2, 解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=. 于是t1=,t2=,t3=40-16.
复制答案
考点分析:
相关试题推荐
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某通信器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着一次函数关系manfen5.com 满分网,其中整数k使式子manfen5.com 满分网有意义.经测算,销售单价60元时,年销售量为50000件.
(1)求出这个函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?
查看答案
嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DE∥AB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
manfen5.com 满分网
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:manfen5.com 满分网,计算结果精确到1米).
查看答案
2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.
(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.