满分5 > 初中数学试题 >

已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、...

已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、B两点.
(1)试确定此二次函数的解析式;
(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.
(1)已知了二次函数图象上的三点坐标,即可用待定系数法求出抛物线的解析式; (2)将P点坐标代入二次函数的解析式中进行验证,即可得到P点是否在此函数图象上的结论; 令抛物线解析式的y=0,即可求得抛物线与x轴交点A、B的坐标,也就得到了AB的长;以AB为底,P点纵坐标的绝对值为高即可求得△PAB的面积. 【解析】 (1)设二次函数的解析式为y=ax2+bx+c; ∵二次函数的图象经过点(0,3),(-3,0),(2,-5),则有: (2分), 解得; ∴y=-x2-2x+3(1分) (2)∵-(-2)2-2×(-2)+3=-4+4+3=3 ∴点P(-2,3)在这个二次函数的图象上(1分) ∵-x2-2x+3=0, ∴x1=-3,x2=1; ∴与x轴的交点为:(-3,0),(1,0)(1分) ∴S△PAB=×4×3=6.(1分)
复制答案
考点分析:
相关试题推荐
如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?
(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;
(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

manfen5.com 满分网 查看答案
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案
已知二次函数y=-2x2,怎样平移这个函数的图象,才能使它经过(0,1)和(1,6)两点?写出平移后的函数解析式.
查看答案
已知抛物线C1的解析式是y=2x2-4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.
查看答案
如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题:
(1)抛物线y2的顶点坐标______
(2)阴影部分的面积S=______
(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.