如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.
考点分析:
相关试题推荐
已知抛物线y=-x
2+2(k-1)x+k+2与x轴交于A、B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.
(1)求实数k的取值范围;
(2)设OA、OB的长分别为a、b,且a:b=1:5,求抛物线的解析式;
(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.
查看答案
如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax
2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.
查看答案
如图,已知抛物线y=-x
2+bx+c与x轴的两个交点分别为A(x
1,0),B(x
2,0),且x
1+x
2=4,

.
(1)分别求出A,B两点的坐标;
(2)求此抛物线的函数解析式;
(3)设此抛物线与y轴的交点为C,过

作直线l与抛物线交于另一点D(点D在x轴上方),连接AC,CB,BD,DA,当四边形ACBD的面积为4时,求点D的坐标和直线l的函数解析式.
查看答案
已知:二次函数y=ax
2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1,0),与y轴负半轴交于点C,其对称轴是直线x=

,tan∠BAC=2.
(1)求二次函数y=ax
2+bx+c的解析式;
(2)作圆O’,使它经过点A、B、C,点E是AC延长线上一点,∠BCE的平分线CD交圆O’于点D,连接AD、BD,求△ACD的面积;
(3)在(2)的条件下,二次函数y=ax
2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.
查看答案
已知抛物线y
1=x
2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y
1=x
2-2x+c的解析式;
(3)若反比例函数

的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y
1与y
2的大小.
查看答案