满分5 > 初中数学试题 >

如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N...

如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.

manfen5.com 满分网
(1)本题的关键是求梯形的高,可通过梯形两底的差和腰的长求出梯形的高,然后根据梯形的面积公式即可得出梯形ABCD的面积. (2)可用二次函数来求解.可设四边形MEFN(其实是矩形)的面积为y,AE=BF=x,那么可根据AB的长表示出EF,然后根据相似三角形△AEM和△AGD得出的关于EM、GD、AE、AG的比例关系式用x表示出ME (也可用∠A的正切函数来求),然后根据矩形的面积公式即可得出y、x的函数关系式,根据函数的性质即可求出y的最大值也就是矩形MEFN的最大面积. (3)若四边形MEFN为正方形,那么ME=EF,可据此确定x的值,然后将x的值代入(2)的函数式中即可求出正方形MEFN的面积. 【解析】 (1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ∵AB∥CD, ∴DG=CH,DG∥CH. ∴四边形DGHC为矩形,GH=CD=1. ∵DG=CH,AD=BC,∠AGD=∠BHC=90°, ∴△AGD≌△BHC(HL). ∴AG=BH=. ∵在Rt△AGD中,AG=3,AD=5, ∴DG=4. ∴S梯形ABCD==16. (2)∵MN∥AB,ME⊥AB,NF⊥AB, ∴ME=NF,ME∥NF. ∴四边形MEFN为矩形. ∵AB∥CD,AD=BC, ∴∠A=∠B. ∵ME=NF,∠MEA=∠NFB=90°, ∴△MEA≌△NFB(AAS). ∴AE=BF. 设AE=x,则EF=7-2x. ∵∠A=∠A(公共角),∠MEA=∠DGA=90°, ∴△MEA∽△DGA. ∴. ∴ME=. ∴S矩形MEFN=ME•EF=x(7-2x)=-(x-)2+. 当x=时,ME=<4, ∴四边形MEFN面积的最大值为. (3)能. 由(2)可知,设AE=x,则EF=7-2x,ME=x. 若四边形MEFN为正方形,则ME=EF. 即=7-2x. 解得x=. ∴EF=7-2x=7-2×=<4. ∴四边形MEFN能为正方形,其面积为S正方形MEFN=()2=.
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=manfen5.com 满分网,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
manfen5.com 满分网
查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

manfen5.com 满分网 查看答案
如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

manfen5.com 满分网 查看答案
如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.