如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数
(k≠0)在第一象限内的图象经过点D、E,且tan ∠ BOA=
.

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
庆华中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据庆华中学的实际情况,需从该体育用品商店一次性购买足球和篮球共100个.要求购买足球和篮球的总费用不超过6000元,这所中学最多可以购买多少个篮球?
某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).


请根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)上述学生成绩的中位数落在哪一组范围内?
(4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?
(1)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF⊥AG于点F.
求证:AE=BF

(2)如图,□ABCD中,
的平分线
交边
于
,
的平分线
交
于
,交
于
.若AB=3,BC=5,求EG的长。
(1)计算:![]()
(2)先化简,再求值:
,其中
为整数且
.
如图,二次函数
的图像过点
,与
轴交于点
.

(1)证明:
(其中
是原点);
(2)在抛物线的对称轴上求一点
,使
的值最小;
(3)若
是线段
上的一个动点(不与
、
重合),过
作
轴的平行线,分别交此二次函数图像及
轴于
、
两点 . 请问
是否存在这样的点
,使
.
若存在,
请求出点
的坐标;若不存在,说明理由.
