满分5 > 初中数学试题 >

如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在...

如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).

说明: 满分5 manfen5.com

(1)直接写出点D的坐标;

(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形,若存在,求出P与Q的坐标;

(3)当点P运动到∠DOP=45度时,求抛物线的对称轴;

(4)求代数式a+b+c的值的取值范围(直接写出答案即可).

 

(1)D(-3;6);(2)P(3,6),Q(0,12);(3)x=;(4) 【解析】 试题分析:(1)根据旋转的性质结合AB=3,OA=6即可得到结果; (2)根据抛物线的对称性及菱形的性质求解即可; (3)延长AB交直线DP于点H,连接BP,设P,可证 ?DOP≌?BOP,即可得到PB=DP=x+3,在正方形OAHC中,PH=6-x,BH=3,根据勾股定理即可列方程求得x的值,从而得到结果; (4)根据二次函数的图象与系数的关系求解即可. (1)由题意得D(-3;6); (2)∵O(0,0),D(-3;6),点D,O,P,Q四点构成的四边形是菱形 ∴P(3,6),Q(0,12) (3)延长AB交直线DP于点H,连接BP 设P,可证 ?DOP≌?BOP   ∴PB=DP=x+3 在正方形OAHC中,PH=6-x,BH="3" ∴ ∴CP=x=2 ∴P(2,6))又D(-3,6) ∴对称轴是直线x=. (4)a+b+c>.  考点:二次函数的综合题
复制答案
考点分析:
相关试题推荐

如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.

说明: 满分5 manfen5.com

(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).

(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.

(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.

 

查看答案

如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.

说明: 满分5 manfen5.com

(1)判断直线CD是否为⊙O的切线,请说明理由;

(2)若CD="3" ,求BC的长.

 

查看答案

已知一次函数y=kx+b的图象经过点A(-1,3)和点B(2,-3).

(1)求这个一次函数的解析式;

(2)当x取何值时,函数值说明: 满分5 manfen5.com

 

查看答案

为增强学生的身体素质,我校坚持长年的全员体育锻炼,并定期进行体能测试,下图是将初三某班学生的立定跳远成绩(精确到0.1米)进行整理后,画出的频数分布直方图的一部分,已知从左到右第一、二、四、五组的频率分别是0.05,0.15,0.30,0.35,第三小组的频数为9人(共有5个小组).

说明: 满分5 manfen5.com

(1)该班参加这次测试的学生有多少人?

(2)若成绩在2.0米以上(含2.0米)的为合格,问该班成绩的合格率是多少?

(3)这次测试中,该班学生成绩中位数落在哪一小组内?

 

查看答案

如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD 的延长线于点E、F,BE=BP.

说明: 满分5 manfen5.com

(1)若∠E=70度,求∠F的度数.

(2)求证:△ABD是等腰三角形.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.