(1)先化简,再求值:(2a2﹣5a)﹣2(3a﹣5+a2).其中a=﹣1;
(2)若|m|=4,|n|=3,且知m<n,求代数式m2+2mn+n2的值.
设a1=32﹣12,a2=52﹣32,…,an=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).
(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由).
(1)分解因式:x2+2x+1= .
(2)若∠α=40°,则∠α的余角是 .
分解因式:
(1)(m+2n)2﹣(m﹣n)2(2)4(a+b)﹣(a+b)2﹣4
阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+2a+a)(x+a﹣2a)
=(x+3a)(x﹣a).
(1)像上面这样把二次三项式分解因式的数学方法是.
(2)这种方法的关键是.
(3)用上述方法把m2﹣6m+8分解因式.
