(本题8分)如图,在梯形ABCD中,AD//BC,E是AD的中点,BC=5,AD=12,梯形高为4,∠A =45°,P为AD边上的动点.

(1)当PA的值为____________时,以点P、B、C、E为顶点的四边形为直角梯形;
(2)当PA的值为____________时,以点P、B、C、E为顶点的四边形为平行四边形;
(3)点P在AD边上运动的过程中,以P、B、C、E为顶点的四边形能否构成菱形?如果能,求出PA长.如果不能,也请说明理由.
(本题8分)如图,四边形ABCD是矩形,点O在矩形上方,点B绕着点O逆时针旋转
后的对应点为点C.

(1)画出点A绕着点O逆时针旋转
后的对应点E;
(2)连接CE,证明:CO平分∠ECD
(3)在(1)(2)的条件下,连接ED,猜想ED与CO的位置关系,并证明你的结论.
(本题8分)阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”是 ;
(2)三角形的“二分线”是 ;
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,简述做法.

图1 图2
如图1,在平面直角坐标系中,直线AB与
轴交于点A,与
轴交于点B,与直线OC:
交于点C.


(1)若直线AB解析式为
,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作
的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.


(1)线段AF与CD相等吗?为什么?
(2)如果AB=AC,试猜测四边形ADCF是怎样的特殊四边形,并说明理由.
某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟,付话费0.6元。若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1和y2元。
(1)试求一个人要打电话30分钟,他应该选择那种通信业务?
(2)根据一个月通话时间,你认为选用哪种通信业务更优惠?
