如图,菱形ABCD的边长为2,对角线BD=2,E、F分别是AD、CD上的两个动点且满足AE+CF=2.
(1) 由已知可得,∠BDA的度数为 ;
(2) 求证:△BDE≌△BCF.

计算:
.
如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,
6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α ≤180°)得到四边形OA′B′C′,
此时直线OA′、直线B′C′分别与直线BC相交于P、Q.在四边形OABC旋转过程中,若BP=BQ,则点P的坐标为____.

定义:
是不为1的有理数,我们把
称为
的衍生数.如:2的衍生数是
,
的衍生数是
.已知
,
是
的衍生数,
是
的衍生数,
是
的衍生数,……,依此类推,则
.
圆锥底面半径为4cm,高为3cm,则它的侧面积是
一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出两个都是黄球的概率是
