探究
如图①,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连结AC、EF.在图中找一个与△FAE全等的三角形,并说明理由.(5分)

应用以□ABCD的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL.若图中阴影部分四个三角形的面积和为12,则□ABCD的面积为 .(3分)
某长途汽车站规定,乘客可以免费最多携带质量a千克的行李,若超过a千克则需购买行李票,且行李票
(元)与行李质量
(千克)间的一次函数关系式为
,现知贝贝带了60千克的行李,交了行李费7元。
(1)若京京带了80千克的行李,则该交行李费多少元?
(2)求a的值.
如图□ABCD中,AE平分
交BC于E,EF∥AB交AD于F,试问:

(1)四边形ABEF是什么图形?请说明理由;
(2)当∠B为多少度数时,四边形AECD是等腰梯形?请说明理由.
我市某一周各天的最高气温统计如下表:
|
最高气温(℃) |
25 |
26 |
27 |
28 |
|
天 数 |
1 |
1 |
2 |
3 |
(1)写出这组数据的中位数与众数;
(2)求出这组数据的平均数.
如图,在平面直角坐标系中,
、
均在边长为1的正方形网格格点上.

(1)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有 个.
(2)将线段
沿x轴向右平移2格得线段CD,请你求出线段CD所在的直线函数解析式.
操作实验:

如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:
如图(4),在△ABC中,AB=AC.

试说明∠B=∠C的理由.(添加辅助线说明)
探究应用:
如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD于F,连接DC、DE、AC,AC与 DE交于点O.

(1)BE与AD是否相等?为什么?
(2)小明认为AC垂直平分线段DE,你认为对吗?说说你的理由。
(3)∠DBC与∠DCB相等吗?试说明理由.
