如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )

A
B
C
D![]()
一组数据2,4,5,5,6的众数是( )
A. 2 B. 4 C. 5 D. 6
若式子
在实数范围内有意义,则
取值范围是( )
A.x<2 B.x≤2 C.x>2 D.x≥2
2的相反数是( )
A. -2
B. 2 C.
D.
![]()
在平面直角坐标系
中,已知二次函数
的图象经过点
和点
,直线
经过抛物线的顶点且与
轴垂直,垂足为
.
1.求该二次函数的表达式;
2.设抛物线上有一动点
从点
处出发沿抛物线向上运动,其纵坐标
随时间
≥
)的变化规律为
.现以线段
为直径作
.
①当点
在起始位置点
处时,试判断直线
与
的位置关系,并说明理由;在点
运动的过程中,直线
与
是否始终保持这种位置关系? 请说明你的理由;
②若在点
开始运动的同时,直线
也向上平行移动,且垂足
的纵坐标
随时间
的变化规律为
,则当
在什么范围内变化时,直线
与
相交? 此时,若直线
被
所截得的弦长为
,试求
的最大值.

知识迁移
当
且
时,因为
≥
,所以
≥
,从而
≥
(当
时取等号).
记函数
,由上述结论可知:当
时,该函数有最小值为![]()
直接应用
已知函数
与函数
, 则当
____时,
取得最小值为___.
变形应用
已知函数
与函数
,求
的最小值,并指出取得
该最小值时相应的
的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共
元;二是燃油费,每千
米为
元;三是折旧费,它与路程的平方成正比,比例系数为
.设该汽车一次运输的路
程为
千米,求当
为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
