如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.
1.猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
2.求证:PC是⊙O的切线

问题情境:
用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?

建立模型:
有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
解决问题:
根据以上步骤,请你解答“问题情境”.

【解析】此题把规律问题借助函数思想来探讨,主要培养学生的应变能力和空间想象能力
一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?
如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.
1.在图中画出线段DE和DF;
2.连接EF,则线段AD和EF互相垂直平分,这是为什么?

如图,在等边三角形ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO= .

如图,是反比例函数y=的图象的一个分支,对于给出的下列说法:
①常数k的取值范围是k>2;
②另一个分支在第三象限;
③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;
④在函数图象的某一个分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则a1<b2;
其中正确的是 (在横线上填出正确的序号)

