我市开发区是全国闻名的电动车生产基地,某电动车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
已知,矩形
中,
,
,
的垂直平分线
分别交
、
于点
、
,垂足为
.
(1)如图1,连接
、
.求证四边形
为菱形,并求
的长;
(2)如图2,动点
、
分别从
、
两点同时出发,沿
和
各边匀速运动一周.即点
自
→
→
→
停止,点
自
→
→
→
停止.在运动过程中,已知点
的速度为每秒5
,点
的速度为每秒4
,运动时间为
秒,当
、
、
、
四点为顶点的四边形是平行四边形时,求
的值.

如图,“五一”期间在丹尼斯商厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在丹尼斯对面的家属楼上.小明在四楼D点测得条幅端点A的仰角为30o,测得条幅端点B的俯角为45o;小雯在三楼C点测得条幅端点A的仰角为45o,测得条幅端点B的俯角为30o.若设楼层高度CD为3米,请你根据小明和小雯测得的数据求出条幅AB的长.(结果精确到个位,参考数据
=1.732)
如图,一次函数
的图象与反比例函数
(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且S△DBP=27,
。
(1)求点D的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?


暑假假期,某校组织八(一)班和八(二)班同学分别到A、B、C、D四地参加社会实践活动,学校按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
(2)若学校采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么学生小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?

如图,在△ABC中,∠ACB=900,AC=BC,CE⊥BE,CE与AB相交于点F,AC=AF.

(1)尺规作图:画出∠CAF的角平分线,交CF于D点(保留作图痕迹,不写画法).
(2)请写出图中两对全等三角形,并选择其中一对加以证明。
