如图是某几何体的三视图及相关数据,则该几何体的侧面积是
A. 10π B. 15π C. 20π D. 30π

小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的
一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是
A.
2 B.
C.
D.
3

若一个正多边形的一个外角是40°,则这个正多边形的边数是
A. 6 B. 7 C. 8 D. 9
下列运算中正确的是 ( )
A.
B.
C.
D.
如图,抛物线经过
,
,
三点.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上存在一点
,使
的值最小,求点
的坐标以
及
的最小值;
(3)在
轴上取一点
,连接
.现有一动点
以每秒
个单位长度的速度从点
出发,沿线段
向点
运动,运动时间为
秒,另有一动点
以某一速度同时从点
出发,沿线段
向点
运动,当点
、点
两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个
值,使线段
恰好被
垂直平分.如果存在,请求出
的值和点
的速度,如果不存在,请说明理由.

【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力
如图,射线BN、AM都垂直于线段AB,E为AM上一动点,
⊥
于F,交BN于C,
⊥
于
,连接BD.

⑴求证:
;
⑵当
为
的中点时,求证:
;
⑶设
,请探究出使
为
等腰三角形的实数
的值.
【解析】(1)中利用
⊥![]()
得到直角三角形AEF相似于三角形ABE,然后得到结论。
(2)中,
由⑴有
,因为
为
的中点,所以![]()
则可以得到
![]()
从而的得到角相等
(3)中,设
,当使
为
等腰三角形时,需要考查谁是腰,分类讨论得到
①
为腰,且
为顶角顶点;
②
为腰,且
为顶角顶点;
③
为底.
①
为腰,且
为顶角顶点;
解得答案为![]()
