古希腊著名的毕达哥拉斯学派把1,3,6,10 ,… 这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定
,
,
,
,…;
,
,
,
,…;
,
,
,
,…,那么,按此规定,
,
= (用含n的式子表示,n为正整数).

如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是

如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R的值是 .

如图,△ABC为等边三角形,D是△ABC 内一点,且AD=3,将△ABD绕点A旋转到△ACE的位置,连接DE,则DE的长为 .

如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是

△
在平面直角坐标系中的位置如图所示,其中A(1, 2),B(1, 1),C(3, 1),将△
绕原点
顺时针旋转
后得到△
,则点A旋转到点
所经过的路线长为

A.
B.
C.
D.
