1. 难度:中等 | |
a、b是实数,集合M={![]() A.1 B.0 C.-1 D.±1 |
2. 难度:中等 | |
设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=( ) A.63 B.45 C.36 D.27 |
3. 难度:中等 | |
某校要从高一、高二、高三共2010名学生中选取50名组成访问团,若采用下面的方法选取:先按简单随机抽样的方法从2010人中剔除10人,剩下的2000人再用分层抽样方法进行,则每个人入选的概率( ) A.不全相等 B.均不相等 C.都相等且为 ![]() D.都相等且为 ![]() |
4. 难度:中等 | |
以下命题中正确的是( ) A.若x∈R且x≠0,则x+ ![]() B.在△ABC中,若sin2A=sin2B,则△ABC是等腰三角形 C.对等差数列{an}的前n项和Sn,若对任意正整数n都有Sn+1>Sn,则an+1>an对任意正整数n恒成立 D.a=3是直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行且不重合的充要条件 |
5. 难度:中等 | |
设函数![]() A.在区间 ![]() B.在区间 ![]() C.在区间 ![]() D.在区间 ![]() |
6. 难度:中等 | |
函数![]() A.0 B.1 C.2 D.3 |
7. 难度:中等 | |
曲线f(x)=x3-2在P点处的切线平行于直线y=3x-1,则P点的坐标为( ) A.(1,0) B.(2,8) C.(1,-1)和(-1,-3) D.(2,8)和(-1,-4) |
8. 难度:中等 | |
将5名同学分配到A、B、C三个宿舍中,每个宿舍至少安排1名学生,其中甲同学不能分配到A宿舍,那么不同的分配方案有( ) A.76种 B.100种 C.132种 D.150种 |
9. 难度:中等 | |
已知![]() ![]() ![]() A. ![]() B. ![]() C. ![]() D. ![]() |
10. 难度:中等 | |
在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM.若侧棱![]() ( ) A.12π B.32π C.36π D.48π |
11. 难度:中等 | |
已知椭圆![]() ![]() A. ![]() B. ![]() C. ![]() D. ![]() |
12. 难度:中等 | |
定义在[0,1]上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(![]() ![]() ![]() A. ![]() B. ![]() C. ![]() D. ![]() |
13. 难度:中等 | |
设x、y满足约束条件![]() |
14. 难度:中等 | |
设(2x-3)10=a+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a+a1+a2+…+a10= . |
15. 难度:中等 | |
在矩形ABCD中,AB=a,AD=2b,a<b,E、F分别是AD、BC的中点,以EF为折痕把四边形EFCD折起,当∠CEB=90°时,二面角C-EF-B的平面角的余弦值等于 . |
16. 难度:中等 | |
已知P是双曲线![]() ![]() ②若|PF1|=e|PF2|,则e的最大值为 ![]() |
17. 难度:中等 | |
已知△ABC中,![]() (I)求角A的大小; (II)若BC=3,求△ABC周长的取值范围. |
18. 难度:中等 | |
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰、已知某选手能正确回答第一、二、三、四轮的问题的概率分别为![]() ![]() ![]() ![]() (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示) |
19. 难度:中等 | |
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=![]() (1)求证:平面BEF⊥平面DEF; (2)求二面角A-BF-E的大小. ![]() |
20. 难度:中等 | |
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3). (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式; (2)若函数g(x)=xf(x)无极值,求实数a的取值范围. |
21. 难度:中等 | |
在平面直角坐标系xoy中,已知三点A(-1,0),B(1,0),C(-1,![]() (I)求椭圆的方程; (II)设点D(0,1),是否存在不平行于x轴的直线l与椭圆交于不同两点M、N,使 ![]() (III)若对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使 ![]() |
22. 难度:中等 | |
在数列![]() ![]() (1)求数列{an}的通项公式; (2)试用n和bn表示bn+1; (3)若b1=1,n∈N*,证明: ![]() |