1. 难度:中等 | |
六个数﹣5, A. 1个 B. 2个 C. 3个 D. 4个
|
2. 难度:简单 | |
我市今年参加中考人数约为42000人,将42000用科学记数法表示为( ) A. 4.2×104 B. 0.42×105 C. 4.2×103 D. 42×103
|
3. 难度:中等 | |
如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A. 主视图 B. 俯视图 C. 左视图 D. 一样大
|
4. 难度:简单 | |
如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是( ) A. 5 B. 6 C. 7 D. 8
|
5. 难度:中等 | |
体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是 A. C.
|
6. 难度:简单 | |||||||||||
某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据,要使该超市销售皮鞋收入最大,该超市应多购哪种价位的皮鞋( )
A. 160元 B. 140元 C. 120元 D. 100元
|
7. 难度:简单 | |
如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是( ) A. 60° B. 80° C. 90° D. 100°
|
8. 难度:中等 | |
点E为正方形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF.设AF=x,△BEF的周长为y,那么能表示y与x的函数关系的图象大致是
|
9. 难度:简单 | |
分解因式:m2n﹣4mn﹣4n=_____.
|
10. 难度:中等 | |
袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为
|
11. 难度:中等 | |
已知x1、x2是关于x的方程x2+3x+k=0的两个根,若x1=1,则x2=_____.
|
12. 难度:中等 | |
如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,将此等腰三角形纸片沿底边BC上的高AD剪成两个全等的三角形,用这两个三角形拼成一个平行四边形,则所拼出的所有平行四边形中最长的对角线的长是_____.
|
13. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论: ①关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;②abc>0;③a+b=c﹣b;④y最大值=
|
14. 难度:困难 | |
正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2
|
15. 难度:中等 | |
反比例函数
|
16. 难度:中等 | |
在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=
|
17. 难度:中等 | |
计算:(﹣1)2018+(﹣
|
18. 难度:中等 | |||||||||||
“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图. 根据以上信息回答下列问题: (1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x在 范围的人数最多; (2)补全频数分布直方图; (3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.
|
19. 难度:中等 | |
一个不透明的口袋里装有分别标有汉字“道”、“德”、“青”、“县”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀. (1)若从中任取一个球,球上的汉字刚好是“德”的概率为多少? (2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“道德”或“青县”的概率.
|
20. 难度:中等 | |||||||||||||||
某商店分两次购进A,B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求A、B两种商品每件的进价分别是多少元? (2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
|
21. 难度:简单 | |
如图,学校教学楼附近有一个斜坡,王老师发现教学楼在水平地面与斜坡处形成的投影中,在斜坡上的影子
|
22. 难度:中等 | |
如图,⊙O是△ABC的外接圆,AC为直径,弧AE=弧BD,BE⊥DC交DC的延长线于点E. (1)求证:∠1=∠BCE; (2)求证:BE是⊙O的切线; (3)若EC=1,CD=3,求cos∠DBA.
|
23. 难度:中等 | |
甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
|
24. 难度:困难 | |
阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE. (1)在图1中证明小胖的发现; 借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD; (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
|
25. 难度:困难 | |
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B( (1)求这条抛物线的表达式; (2)求∠ACB的度数; (3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
|