1. 难度:中等 | |
A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧法”.方法是: ①画线段AB,分别以A,B为圆心,AB长为半径画弧相交于C; ②以C为圆心,仍以AB长为半径画弧交AC的延长线于D; ③连接DB.则∠ABD就是直角. (1)请你就∠ABD是直角作出合理解释; (2)现有一长方形木块的残留部分如图,其中AB,CD整齐且平行,BC,AD是参差不齐的毛边.请你在毛边附近用尺规画一条与AB,CD都垂直的边(不写作法,保留作图痕迹); ![]() B.如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE. (1)写出图中所有相等的线段,并选择其中一对给予证明; (2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由. ![]() |
2. 难度:中等 | |
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP. (1)如图②,若M为AD边的中点, ①△AEM的周长=______cm; ②求证:EP=AE+DP; (2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由. ![]() |
3. 难度:中等 | |
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.![]() ﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC. ﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F,试判断∠A1C1C与∠A1BC是否相等,并说明理由. ﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形. ![]() |
4. 难度:中等 | |
已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M. (1)求证:△ABF≌△DAE; (2)找出图中与△ABM相似的所有三角形(不添加任何辅助线). ![]() |
5. 难度:中等 | |
学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件. (1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足______,或______,两个直角三角形相似”. (2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足______的两个直角三角形相似”. 请结合下列所给图形,写出已知,并完成说理过程. 已知:如图,______. 试说明Rt△ABC∽Rt△A′B′C′. ![]() |
6. 难度:中等 | |
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F. (1)证明:△ACE∽△FBE; (2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由. ![]() |
7. 难度:中等 | |
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E. (1)证明:△OAB∽△EDA; (2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离. ![]() |
8. 难度:中等 | |
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由) ![]() |
9. 难度:中等 | |
如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C坐标是______,当点D运动8.5秒时所在位置的坐标是______; (2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似?(只考虑以点A、O为对应顶点的情况) ![]() |
10. 难度:中等 | |
如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上. (1)求证:△ABD∽△CAE; (2)如果AC=BD,AD=2 ![]() ![]() |
11. 难度:中等 | |
一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题: 如图,在△ABC中,∠ACB>∠ABC. (1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)? (2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数? ![]() |
12. 难度:中等 | |
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE. (1)写出图中两对相似三角形(不得添加字母和线); (2)请分别说明两对三角形相似的理由. ![]() |
13. 难度:中等 | |
如图,有两个动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,问: (1)在E,F移动过程中,AE与BF的位置和大小有何关系?并给予证明; (2)若AE和BF相交点O,图中有多少对相似三角形?请把它们写出来. ![]() |
14. 难度:中等 | |
如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.![]() |
15. 难度:中等 | |
已知:在△ABC中,AB=AC. (1)设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式,并在直角坐标系中画出此函数的图象; (2)如图,D是线段BC上一点,连接AD.若∠B=∠BAD,求证:△ABC∽△DBA. ![]() |
16. 难度:中等 | |
如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB. (1)求sin∠ABC的值; (2)若E为x轴上的点,且S△AOE= ![]() (3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由. ![]() |
17. 难度:中等 | |
如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. ![]() |
18. 难度:中等 | |
如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证: (1)OC⊥DE; (2)△ACD∽△CBD. ![]() |
19. 难度:中等 | |
如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. ![]() |
20. 难度:中等 | |
如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.![]() |
21. 难度:中等 | |
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. ![]() |
22. 难度:中等 | |
如图,梯形ABCD内接于⊙O,BC∥AD,AC与BD相交于点E,在不添加任何辅助线的情况下: (1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一对全等三角形进行证明; (2)若BD平分∠ADC,请找出图中与△ABE相似的所有三角形. ![]() |
23. 难度:中等 | |
如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.![]() |
24. 难度:中等 | |
如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H. (1)写出图中不全等的两个相似三角形(不要求证明); (2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明. ![]() |
25. 难度:中等 | |
如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=______°,BC=______ ![]() |
26. 难度:中等 | |
如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE. (1)证明:△ABE∽△BFE; (2)证明:△BDE是等腰直角三角形; (3)如果四边形ABEC是梯形,试求∠ABC的大小. ![]() |
27. 难度:中等 | |
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F. (1)求证:△PFA∽△ABE; (2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由. ![]() |
28. 难度:中等 | |
如图,点O是△ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,使得![]() ![]() |
29. 难度:中等 | |
如图①,将矩形ABCD沿着对角线AC分割,得到△ABC和△ACD,将△ACD绕点A按逆时针方向旋转α度,使D,A,B三点在同一直线上,得到图②,再把图②中的△ADE沿着AB方向平移s格,使点D与点A重合,得到图③,设EF与AC相交于点G. 请解答以下问题: (1)上述过程中,α=______度,s=______格; (2)在图③中,除了△ABC∽△EAF以外,还能找出对相似三角形; (3)请写一对你在图③中找出的相似三角形,并加以证明. ![]() |
30. 难度:中等 | |
已知:如图,弦AB和CD相交于⊙O内一点P(P与O不重合),连接AC,BD,过A作AE⊥CP于E,过D作DF⊥PB于F. (1)请找出图中二对相似三角形:______∽______,______∽______; (2)请你从(1)中选择一对相似三角形加以证明. ![]() |