1. 难度:中等 | |
在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=![]() ![]() |
2. 难度:中等 | |
如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为 .![]() |
3. 难度:中等 | |
如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= .![]() |
4. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= .![]() |
5. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= .![]() |
6. 难度:中等 | |
如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是 .![]() |
7. 难度:中等 | |
![]() |
8. 难度:中等 | |
如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么: (1)当t为何值时,△QAP为等腰直角三角形? (2)求四边形QAPC的面积,提出一个与计算结果有关的结论; (3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似? ![]() |
9. 难度:中等 | |
已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 ![]() (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围; (4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标. ![]() |
10. 难度:中等 | |
在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒. (1)求直线AB的解析式; (2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似? (3)当t=2秒时,四边形OPQB的面积多少个平方单位? ![]() |
11. 难度:中等 | |
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题: (1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______. ②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动. 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法) (3)若AC=2 ![]() ![]() |
12. 难度:中等 | |
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n. (1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明; (2)求m与n的函数关系式,直接写出自变量n的取值范围; (3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2; (4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由. ![]() |
13. 难度:中等 | |
如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE. (1)求证:∠CBE=36°; (2)求证:AE2=AC•EC. ![]() |
14. 难度:中等 | |
如图,等腰三角形ABC中,若∠A=∠B=∠DPE, (1)求证:△APD∽△BEP; (2)若AP=1,PB=2,BE= ![]() ![]() |
15. 难度:中等 | |
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD. (1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值; (3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数) ![]() |
16. 难度:中等 | |
如图,点C、D在线段AB上,△PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB; (2)当△ACP∽△PDB时,求∠APB的度数. ![]() |
17. 难度:中等 | |
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G. (1)求证:△BEF是等边三角形; (2)若BA=4,CG=2,求BF的长. ![]() |
18. 难度:中等 | |
已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度. (1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长; (2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明. ![]() |
19. 难度:中等 | |
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.![]() |
20. 难度:中等 | |
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合. (1)求证:△AHD∽△CBD; (2)连HO,若CD=AB=2,求HD+HO的值. ![]() |
21. 难度:中等 | |
(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE. (2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由. ![]() |
22. 难度:中等 | |
如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°. (1)求证:△ACF∽△BEC; (2)设△ABC的面积为S,求证:AF•BE=2S; (3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明. ![]() |
23. 难度:中等 | |
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G. 求证: ![]() ![]() |
24. 难度:中等 | |
如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补. (1)求∠C的度数; (2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由; (3)若CD=6,BC=8,S四边形ABCD=49,求AB的值. ![]() |
25. 难度:中等 | |
如图,在菱形ABCD中,点E在CD上,连接AE并延长与BC的延长线交于点F. (1)写出图中所有的相似三角形(不需证明); (2)若菱形ABCD的边长为6,DE:AB=3:5,试求CF的长. ![]() |
26. 难度:中等 | |
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H. (1)求证:△ABE∽△ADF; (2)若AG=AH,求证:四边形ABCD是菱形. ![]() |
27. 难度:中等 | |
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,说明理由; (2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R. ①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积; ②当线段BP的长为何值时,△PQR与△BOC相似. ![]() |
28. 难度:中等 | |
如图1,半圆O为△ABC的外接半圆,AC为直径,D为![]() (1)问添加一个什么条件后,能使得 ![]() (2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由; (3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论. ![]() |