1. 难度:中等 | |
(2005•茂名)如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q, (1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等?并证明你的结论. ![]() |
2. 难度:中等 | |
(2005•临沂)如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9. (1)求DC的长; (2)求证:四边形ABCE是平行四边形. ![]() |
3. 难度:中等 | |
(2005•长沙)已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G. (1)如图1,如果点E、F在边AB上,那么EG+FH=AC; (2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______; (3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______. 对(1)(2)(3)三种情况的结论,请任选一个给予证明. ![]() |
4. 难度:中等 | |||||||||||||||||||||
(2005•江西)有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.设CE=x(厘米),EF=a(厘米). (1)问点G比点A高出多少厘米?(用含y,a的式子表示) (2)求出由x和a算出y的计算公式; (3)现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如下右表所示,由于某种原因,甲组C同学的弹跳成绩辨认不清,但知他弹跳时的位置为x=150厘米,且a=205厘米,请你计算C同学此次的弹跳成绩,并从两组同学弹跳成绩的整齐程度比较甲、乙两组同学的弹跳成绩.
![]() ![]() ![]() ![]() ![]() ![]() |
5. 难度:中等 | |
(2010•鞍山)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒). (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形; (3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值; (4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由. ![]() |
6. 难度:中等 | |
(2005•吉林)在矩形纸片ABCD中,AB=3![]() (1)BE的长为______,QF的长为______; (2)四边形PEFH的面积为______ ![]() |
7. 难度:中等 | |
(2005•河北)图1至图7中的网格图均是20×20的等距网格图(每个小方格的边长均为1个单位长).侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的![]() (1)在区域MNCD内,请你针对图1,图2,图3,图4中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影. (2)只考虑在区域ABCD内开成的盲区.设在这个区域内的盲区面积是y(平方单位). ①如图5,当5≤t≤10时,请你求出用t表示y的函数关系式; ②如图6,当10≤t≤15时,请你求出用t表示y的函数关系式; ③如图7,当15≤t≤20时,请你求出用t表示y的函数关系式; ④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况. (3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题(3)是额外加分,加分幅度为1~4分). ![]() ![]() |