1. 难度:中等 | |
(2005•枣庄)如图(a)所示,四边形ABCD是等腰梯形,AB∥DC、由4个这样的等腰梯形可以拼出图(b)所示的平行四边形.![]() (1)求四边形ABCD四个内角的度数; (2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由(思路提示:等腰梯形在同一底上的两个角相等,显然可以发现上底与腰相等); (3)现有图(b)中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.(和你的同学交流) |
2. 难度:中等 | |
(2005•长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.![]() |
3. 难度:中等 | |
(2005•柳州)如图,在等腰梯形ABCD中,AD=7,BC=15,∠B=60°,EF为中位线.求: (1)EF的长. (2)AB的长. ![]() |
4. 难度:中等 | |
(2005•连云港)如图,在△ABC中,∠ACB=90°,DE是△ABC的中位线,点F在AC延长上,且CF=![]() ![]() |
5. 难度:中等 | |
(2005•河南)已知⊙O的内接四边形ABCD中,AD∥BC.试判断四边形ABCD的形状,并加以证明. |
6. 难度:中等 | |
(2005•南充)如图,点O是Rt△ABC斜边上一点,⊙O与AC,BC分别相切于点M,N. (1)△AMO是否相似于△ONB?______(填“是”或“否”); (2)如果OA=4,OB=3,⊙O的半径为______. ![]() |
7. 难度:中等 | |
(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由. ![]() |
8. 难度:中等 | |
(2005•日照)如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以![]() (1)请求出⊙O2与腰CD相切时t的值; (2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切? ![]() |
9. 难度:中等 | |
(2007•开封)已知:⊙O1与⊙O2相交于点A、B,过点B作CD⊥AB,分别交⊙O1和⊙O2于点C、D. (1)如图,求证:AC是⊙O1的直径; (2)若AC=AD, ①如图,连接BO2、O1O2,求证:四边形O1C BO2是平行四边形; ②若点O1在⊙O2外,延长O2O1交⊙O1于点M,在劣弧 ![]() ![]() ![]() |
10. 难度:中等 | |
(2005•吉林)如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为![]() ![]() (1)求矩形A′BC′D′的对角线A′C′的长; (2)求 ![]() (3)求图中 ![]() (4)求图中 ![]() ![]() |
11. 难度:中等 | |
(2005•山西)请用与下图全等的四个等腰直角三角形拼成一个等腰梯形.要求: (1)按1:1的比例画出所拼的图形; (2)简要写出拼图过程. ![]() |
12. 难度:中等 | |
(2005•十堰)新教室就要铺地板砖了,请你利用下列基本图形:正方形,圆,正三角形,线段中的至少三种基本图形以及轴对称的性质,设计组合一块富有创意的地板图案并说明你的设计创意. |
13. 难度:中等 | |
(2005•苏州)如图,平行四边形纸条ABCD中,E,F分别是AC,BD的中点.将纸条的下半部分平行四边形ABFE沿EF翻折,得到一个V字形图案. (1)请在原图中画出翻折后的平行四边形A′B′FE;(用尺规作图,不写画法,保留作图痕迹) (2)已知∠A=65°,求∠B′FC的度数. ![]() |
14. 难度:中等 | |
(2005•南宁)如图,石头A和石头B相距80cm,且关于竹竿l对称,一只电动青蛙在距竹竿30cm,距石头A为60cm的P1处,按如下顺序循环跳跃:![]() (1)请你画出青蛙跳跃的路径(画图工具不作限制); (2)青蛙跳跃25次后停下,此时它与石头A(3)相距______cm,与竹竿l相距______cm. |
15. 难度:中等 | |
(2005•广州)如图,已知正方形ABCD的面积为S. (1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法) (2)用S表示(1)中作出的四边形A1B1C1D1的面积S1; (3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四个边形,面积为S2,则S1与S2是否相等,为什么? ![]() |
16. 难度:中等 | |
(2005•新疆)如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,求梯形ABCD的高CD的长.(结果精确到0.1cm)![]() |
17. 难度:中等 | |
(2005•南通)如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OAPB重叠部分图形的周长为l. (1)求A1、P1两点的坐标(用含m的式子表示); (2)求周长L与m之间的函数关系式,并写出m的取值范围. ![]() |
18. 难度:中等 | |
(2005•龙岩)把矩形纸片OABC放人直角坐标系中,使OA、OC分别落在x轴和y轴的正半轴上. (1)将纸片OAB C折叠,使点A与C重合,用直尺和圆规在原图上作出折叠后的图形,并在图中标明折叠后点B的对应点B’(不写作法,保留作图痕迹); (2)在矩形OABC中,连接AC,且AC=2 ![]() ![]() ![]() |
19. 难度:中等 | |
(2005•福州)已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角梯形ABCD向左翻折180°,翻折一次得图形①,翻折二次得图形②,如此翻折下去. (1)将直角梯形ABCD向左翻折二次,如果此时等边三角形的边长a≥2cm,这时两图形重叠部分的面积是多少? (2)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积,这时等边三角形的边长a至少应为多少? (3)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积的一半,这时等边三角形的边长应为多少? ![]() |
20. 难度:中等 | |
(2005•泰安)已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上. 问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由. (说明:结论中不得含有图中未标识的字母) ![]() |
21. 难度:中等 | |
(2005•扬州)若一个矩形的短边与长边的比值为![]() (1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD; (2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由; (3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明). ![]() |
22. 难度:中等 | |
(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE. (1)求证:CE=CA; (2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值. ![]() |
23. 难度:中等 | |
(2008•旅顺口区)如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=______°,BC=______ ![]() |
24. 难度:中等 | |
(2005•漳州)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a. (1)求证:△ADE∽△BEC; (2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD; (3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由. ![]() |
25. 难度:中等 | |
(2005•遂宁)如图:在平行四边形ABCD中,E是AD上的一点.求证:![]() ![]() |
26. 难度:中等 | |||||||||||||
(2005•绍兴)E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图① (1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm)
(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么? (3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由) ![]() |
27. 难度:中等 | |
(2005•青岛)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况. 研究: (1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明; (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由; (3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明. ![]() |
28. 难度:中等 | |
(2005•南通)如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. (1)求证:△ADE≌△BCF; (2)若AD=4cm,AB=8cm,求CF的长. ![]() |
29. 难度:中等 | |
(2005•南通)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. (1)求证:四边形ABFE是等腰梯形; (2)求AE的长. ![]() |