1. 难度:中等 | |
(2013•襄阳)2的相反数是( ) A.-2 B.2 C. ![]() D. ![]() |
2. 难度:中等 | |
(2010•甘井子区模拟)自2009年5月1日上海世博会志愿者招募工作启动,截至2009年12月31日,报名总数为612 251人,这个数字用科学记数法可表示为( ) A.6.12251×106 B.6.12251×105 C.61.2251×106 D.61.2251×105 |
3. 难度:中等 | |
(2010•甘井子区模拟)不等式-2x>1的解集是( ) A.x>-2 B.x> ![]() C.x<-2 D.x<- ![]() |
4. 难度:中等 | |
(2006•益阳)下列运算中正确的是( ) A.xm+xm=x2m B.2m•3m=6m+n C.(3m)2=9m D.x2n÷xn=x2 |
5. 难度:中等 | |
(2010•甘井子区模拟)如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
6. 难度:中等 | |
(2007•滨州)如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )![]() A.sinA的值越大,梯子越陡 B.cosA的值越大,梯子越陡 C.tanA的值越小,梯子越陡 D.陡缓程度与∠A的函数值无关 |
7. 难度:中等 | |
(2010•甘井子区模拟)在一个不透明的袋中装有2个红球和3个白球,它们除了颜色外都相同,从中随机摸出1个球,则摸出红球的概率是( ) A. ![]() B. ![]() C. ![]() D. ![]() |
8. 难度:中等 | |
(2009•大连)如图是一个几何体的三视图,其中主视图,左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何体的侧面积是( )![]() A.60πcm2 B.65πcm2 C.70πcm2 D.75πcm2 |
9. 难度:中等 | |
(2010•甘井子区模拟)某天最低气温是-5℃,最高气温比最低气温高5℃,则这天的最高气温是 ℃. |
10. 难度:中等 | |
(2009•大连)计算:(![]() ![]() |
11. 难度:中等 | |
(2011•西盟县模拟)请写出一个既是轴对称,又是中心对称的几何图形名称:______. |
12. 难度:中等 | |
(2007•滨州)如图所示,AB∥CD,∠ABE=110°,则∠ECD= 度.![]() |
13. 难度:中等 | |
(2010•甘井子区模拟)如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A25米,离路灯B5米,如果小亮的身高为1.6米,那么路灯高度为 米.![]() |
14. 难度:中等 | |
(2011•南漳县模拟)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是 cm.![]() |
15. 难度:中等 | |
(2010•甘井子区模拟)若点A(-2,y1),B(-1,y2),C(3,y3)三点都在双曲线y=![]() |
16. 难度:中等 | |
(2010•甘井子区模拟)如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(-2,0)是对应点,点B(2,2),则B′点的坐标 .![]() |
17. 难度:中等 | ||||||||||||||||
(2010•甘井子区模拟)老师计算学生的学期总评成绩按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%,小贝和小嘉的成绩如下所示:
|
18. 难度:中等 | |
(2009•河南)先化简![]() ![]() |
19. 难度:中等 | |
(2011•鼎湖区模拟)如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.![]() |
20. 难度:中等 | |
(2011•营口)如图所示,点P表示广场上的一盏照明灯. (1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示); (2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米). (参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574) ![]() |
21. 难度:中等 | |
(2009•临沂)在全市中学运动会800m比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y(m)与比赛时间x(s)之间的关系,根据图象解答下列问题: (1)甲摔倒前,______的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙? ![]() |
22. 难度:中等 | |
(2010•甘井子区模拟)现有一块长方形的镜面玻璃,在它的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1.已知边框的价格是每米30元. (1)若镜子的宽是x m,制作边框的费用为y元,求y与x之间的函数关系式; (2)若镜面玻璃的价格是每平方米120元,另外制作这面镜子还需加工费45元. ①求制作这面镜子的总费用w(单位:元)与x之间的函数关系式; ②如果制作这面镜子共花了195元,求这面镜子的长和宽. |
23. 难度:中等 | |
(2010•甘井子区模拟)已知:如图,EF是矩形ABCD的对角线AC的垂直平分线,EF与对角线AC及边AD、BC分别交于点O、E、F. (1)求证:四边形AFCE是菱形; (2)如果FE=2ED,求AE:ED的值. ![]() |
24. 难度:中等 | |
(2010•甘井子区模拟)如图1,有一块30°、60°、90°的三角板所对应的点为A、B、C,斜边AB为4个单位长度,且A、B两点分别在x轴、y轴上滑动,记∠BAO=α.(当B点与O点重合时,记α=0°,如图2所示;当A点与O点重合时,记α=90°,如图3所示).![]() (1)当α=0°时,直接写出点C的坐标______ |
25. 难度:中等 | |
(2010•甘井子区模拟)如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C. (1)求此二次函数的解析式,并写出它的对称轴; (2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由; (3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. ![]() |
26. 难度:中等 | |
(2010•甘井子区模拟)在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别为AB、BD中点.连接MN交CE于点K. (1)如图1.当C、B、D共线,AB=2BC时,探索CK与EK之间的数量关系,并证明; (2)如图2,当C、B、D不共线,且AB≠2BC时,(1)中的结论是否成立,若成立,请证明;若不成立,请说明理由; (3)将题中的条件“∠ABC=∠BDE=90°,BC=DE,AC=BE”都去掉,再添加一个条件,写出一个类似的对一般三角形都成立的问题.(画出图形,写出已知和结论,不用证明) ![]() |