1. 难度:简单 | |
-3的相反数是( ) A.3 B.
|
2. 难度:简单 | |
如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为( ) A.70º B.100º C.110º D.120º
|
3. 难度:简单 | |
甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( ) A.甲团 B.乙团 C.丙团 D.甲或乙团
|
4. 难度:简单 | |
左下图为主视方向的几何体,它的俯视图是( )
|
5. 难度:简单 | |
下列等式成立的是( ). A. C.
|
6. 难度:简单 | |
如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( ) A、
|
7. 难度:简单 | |
一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ). A.
|
8. 难度:简单 | |
将抛物线 A. C.
|
9. 难度:简单 | |
因式分【解析】
|
10. 难度:简单 | |
情系玉树大爱无疆,截至5月21日12时,青海玉树共接收国内外地震救灾捐赠款物551300万元,将551300万元用科学记数法表示为__________万元
|
11. 难度:简单 | |
函数
|
12. 难度:简单 | |
已知关于
|
13. 难度:简单 | |
两圆半径分别是1和2,当两圆外离时,这两圆的圆心距d的取值范围是 .
|
14. 难度:简单 | |||||||||||||||
宁宁同学设计了一个计算程序,如下表
根据表格中的数据的对应关系,可得a的值是________
|
15. 难度:中等 | |
如图,已知函数
|
16. 难度:简单 | |
如图,已知直线
|
17. 难度:简单 | |
计算:
|
18. 难度:简单 | |
解方程:
|
19. 难度:简单 | |
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
|
20. 难度:简单 | |
世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题: (1)求出这10天持票入园人数的平均数、中位数和众数; (2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过30万人的有多少天?
|
21. 难度:简单 | |
2012年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考数据:
|
22. 难度:简单 | |
如图,正比例函数 (1)求反比例函数的解析式; (2)如果
|
23. 难度:简单 | |
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D. (1)求线段AD的长度; (2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.
|
24. 难度:简单 | |
如图1,抛物线 ⑴直接写出A、C两点坐标和直线AD的解析式; ⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点
|
25. 难度:简单 | |
年春季,我国云南、贵州等西南地区遇到多年不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农及田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩. (1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台. ①用含x、y的式子表示丙种柴油发电机的数量; ②求出y与x的函数关系式; (2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少?
|
26. 难度:简单 | |
问题背景 (1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积 探究发现 (2)在(1)中,若 拓展迁移 (3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
|
27. 难度:中等 | |
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm.如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题: (1)当t为何值时,点A在线段PQ的垂直平分线上? (2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由. (3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)
|