| 1. 难度:中等 | |
|
如图所示,有两束颜色相同的、间距为
A.仍是平行光,但宽度大于 C.成为会聚光束 D.成为发散光束
|
|
| 2. 难度:中等 | |
|
如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1和m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是( )
A.若m2向下运动,则斜劈受到水平面向左摩擦力 B.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+M)g C.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力 D.若m2向上运动,则轻绳的拉力一定大于m2g
|
|
| 3. 难度:中等 | |
|
如图是变压器通过降压给用户供电的示意图,变压器输入电压是市电网的电压,不会有很大的波动,可以认为输入电压是不变的,输出电压通过输电线输送给用户,输电线的电阻用R0表示,变阻器R表示用户用电器的总电阻,当滑动变阻器触头P向下移时( )
A.相当于在减少用电器的数目 B.变压器的输入功率在增大 C.变阻器R上消耗功率增大 D.A2表的示数增大,Al表的示数减小
|
|
| 4. 难度:中等 | |
|
如图所示为用可调内阻电池演示电源电动势与闭合电路内外电压关系的实验装置示意图。下述说法正确的是( )
A.A接电压表V1的“+”接线柱,B接电压表V1的“-”接线柱 C接电压表V2的“+”接线柱,D接电压表V2的“-”接线柱 B.滑动变阻器的滑动头向右移动时电压表V1的示数增大,电压表V2的示数增大 C.滑动变阻器的滑动头向左移动时电压表Vl的示数减小,电压表V2的示数增大 D.无论滑动变阻器的滑动头向右移动还是向左移动,电压表V1、V2的示数之和不变
|
|
| 5. 难度:中等 | |
|
已知地球半径为R,质量为M,自转角速度为w,地面重力加速度为g,万有引力常量为G,地球同步卫星的运行速度为v,则第一宇宙速度的值可以表示为( ) A. B. C.
|
|
| 6. 难度:中等 | |
|
—列简谐横波在t=1.0s时的波形图如图乙所示,图甲是该波中质点a的振动图象,则( )
A.这列波沿X轴负方向传播,波速v=0.02m/s B.这列波沿X轴负方向传播,波速v=0.5m/s C.t=0至t =1s的时间内,质点b的位移始终在增大 D.t=4s时刻,质点c的位移为负值且向上振动
|
|
| 7. 难度:中等 | |
|
如图所示abcd为一竖直放置的正方形导线框,其平面与匀强磁场方向垂直。导线框沿竖直方向从磁场上边界开始下落,直到ab边出磁场(已知磁场高度大于导线框边长),则以下说法正确的是( )
A.线圈进入磁场和离开磁场的过程中通过导体横截面的电荷量相等 B.线圈进入磁场和离开磁场的过程中导体内产生的电热相等 C.线圈从进入磁场到完全离开磁场的过程中导体内产生的电热不可 能等于线圈重力势能的减小 D.若线圈在ab边出磁场时已经匀速运动,则线圈的匝数越多下落的速度越大
|
|
| 8. 难度:中等 | |
|
如图21-1为用拉力传感器和速度传感器探究“加速度与物体受力的关系” 实验装置。用拉力传感器记录小车受到拉力的大小,在长木板上相距L= 48.00cm的A、B两点各安装一个速度传感器,分别记录小车到达A、B时的速率。
](1)实验主要步骤如下: ①将拉力传感器固定在小车上; ②平衡摩擦力,让小车做 运动; ③把细线的一端固定在拉力传感器上,另一端通过定滑轮与钩码相连; ④接通电源后自C点释放小车,小车在细线拉动下运动,记录细线拉力F的大小及小车分别到达A、B时的速率vA、vB; ⑤改变所挂钩码的数量,重复④的操作。 (2)下表中记录了实验测得的几组数据,
(3)由表中数据,在坐标纸上作出a~F关系图线; (4)对比实验结果与理论计算得到的关系图线(图21-2中已画出理论图线) ,造成上述偏差的原因是 。
|
|
| 9. 难度:中等 | |
|
某同学准备利用下列器材测量电源电动势和内电阻。 A.干电池两节,每节电动势约为1.5V,内阻约几欧姆 B.直流电压表V1 、V2,量程均为0~3 V,内阻约为3kΩ C.定值电阻R0,阻值为5Ω D.滑动变阻器R,最大阻值50Ω E.导线和开关ww w.ks5 u.co m (1)该同学连接的实物电路如图22-1所示,其中还有一根导线没有连,请补上这根导线。
(2)实验中移动滑动变阻器触头,读出伏特表V1 和V2的多组数据U1、U2,描绘出U1~U2图像如图22-2所示,图中直线斜率为k,与横轴的截距为a,则电源的电动势E= ,内阻为r= (用k、a、R0表示)。
|
|
| 10. 难度:中等 | |
|
如图所示,摩托车做腾跃特技表演,以1.0m/s的初速度沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW行驶,经过1.2s到达平台顶部,到达顶部后立即关闭发动机油门,人和车落至地面时,恰能无碰撞地沿圆弧切线从A点切入光滑竖直圆弧轨道,并沿轨道下滑。已知圆弧半径为R=1.0m,人和车的总质量为180kg,特技表演的全过程中不计一切阻力,取g=10m/s2,sin530=0.8,cos530=0.6。求:
(1)人和车到达顶部平台时的速度v; (2)人和车从平台飞出到达A点时的速度大小和方向; (3)人和车运动到圆弧轨道最低点O时对轨道的压力。
|
|
| 11. 难度:中等 | |
|
如图23-1,在真空中足够大的绝缘水平地面上,一个质量为m=0.2kg,带电量为q= +2.0×10-6C的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1。从t=0时刻开始,空间加上一个如图23-2所示的场强大小和方向呈周期性变化的电场,例如:0~2s场强是3×105N/C(取水平向右的方向为正方向,
(1)15s内小物块的位移大小; (2)15s内小物块电势能的变化。
|
|
| 12. 难度:中等 | |
|
如图所示,水平放置的平行金属板A和B的间距为d、极板长为2d;金属板右侧的三块挡板
MN、NP、PM围成一个等腰直角三角形区域,顶角∠NMP为直角,MN挡板上的中点处,有一个小孔K恰好位于B板右端,已知水平挡板NP的长度为
(1)所施加的恒定电压大小。 (2)现在挡板围成的三角形区域内,加一垂直纸面的匀强磁场,要使从小孔K飞入的粒子经过磁场偏转后能直接(不与其他挡板碰撞)打到挡板MP上,求所加磁场的方向和磁感应强度的范围。 (3)以M为原点,沿MP方向建立x轴,求打到挡板MP上不同位置(用坐标x表示)的粒子在磁场中的运动时间。
|
|
