| 1. 难度:中等 | |
| 下列计算正确的是( ) A.a2·a3=a6 B.y3÷y3=y C.3m+3n=6mn D.(x3)2=x6 
 | |
| 2. 难度:中等 | |
| 
 A.4 B.-4 C.-2 D.2 
 | |
| 3. 难度:中等 | |
| 下列成语所描述的事件是必然事件的是( ) A.水中捞月 B.拔苗助长 C.瓮中捉鳖 D.守株待兔 
 | |
| 4. 难度:中等 | |
| 如图,量角器外缘上有A、B两点,它们所表示的读数分别是 80°、50°,则∠ACB应为( ) 
 A.30° B.15° C.20 ° D.40° 
 | |
| 5. 难度:中等 | |
| 如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是( ) 
 
 
 | |
| 6. 难度:中等 | |
| 为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是( ) 
 A.60千米/小时,60千米/小时 B.58千米/小时,60千米/小时 C.60千米/小时,58千米/小时 D.58千米/小时, 58千米/小时 
 | |
| 7. 难度:中等 | |
| 方程 A.x=1 B.x=-1 C.x=2 D.x=-2. 
 | |
| 8. 难度:中等 | |
| 已知反比例函数 
 
 | |
| 9. 难度:中等 | |
| 如图, A.18 B.12 C.32 D.16 
 
 | |
| 10. 难度:中等 | |
| 汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图).则A、B两个村庄间的距离是( )米 
 
 
 
 
 
 A.300 C.300 
 | |
| 11. 难度:中等 | |
| 如图,在矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,如果设折痕为EF,那么重叠部分△AEF的面积等于( )cm2 
 A. 
 | |
| 12. 难度:中等 | |
| 为了加快3G网络建设,电信运营企业将根据各自发展规划,今明两年预计完成3G投资2880亿元左右,请将2880亿元用科学记数法(保留两个有效数字)表示为 元. 
 | |
| 13. 难度:中等 | |
| 把2a3—8ab2分解因式,结果为 . 
 | |
| 14. 难度:中等 | |
| 如图,随机闭合开关S1、S2、S3中的两个,则灯泡 
 
 | |
| 15. 难度:中等 | |
| 已知A(-4,2)和B(b,-4)是一次函数y=kx+b的图像与反比例函数y= 
 | |
| 16. 难度:中等 | |
| 如图所示,已知:点A(0,0),B( 
 
 | |
| 17. 难度:中等 | |
| 先化简,再求值: 
 
 | |
| 18. 难度:中等 | |
| 已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。 
 求证:(1)△ADF≌△CBE;(2)EB∥DF。 【解析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB 
 | |
| 19. 难度:中等 | |
| 某地方教育局为了解去年九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题: 
 (说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下) (1)请把条形统计图补充完整; (2)样本中D级的学生人数占全班学生人数的百分比是 ; (3)扇形统计图中A级所在的扇形的圆心角度数是 ; (4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和. 
 | |
| 20. 难度:中等 | |
| 如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE= 
 
 | |
| 21. 难度:中等 | |
| 如图,已知二次函数y=ax2-4x+c的图像经过点A和点B.(1)求该二次函数的表达式; 
 (2)点E(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求Q 到y轴的距离. (3)设抛物线与y轴的的交点为C,点P为抛物线的对称轴上的一动点,求使∠PCB=90°的点P的坐标. 
 | |
| 22. 难度:中等 | ||||||||||
| 工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为400箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量 
 (1)四月份的平均日销售量为多少箱? (2)为满足市场需求,该厂打算在投资不超过138万元的情况下,购买5台新设备,准备在新设备和原设备的共同工作下扩大生产规模,使日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表: 
 
 
 
 
 请问:有哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案? 
 | ||||||||||
| 23. 难度:中等 | |
| 如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积, 
 (1)S与 (2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少? (3)如图2,连结BE,当AE为何值时, 
 | |
