| 1. 难度:中等 | |
|
-元二次方程x2-x=0的解为 A.此方程无实数解 B.0 C.1 D.0或1
|
|
| 2. 难度:中等 | |
|
在抛物线y=x2-4x-4上的一个点是 A.(4,4) B.(-
|
|
| 3. 难度:中等 | |
|
△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为 A.
|
|
| 4. 难度:中等 | |
|
在一副扑克牌(54张,其中王牌两张)中,任意抽取一张牌是“王牌”的概率是 A.
|
|
| 5. 难度:中等 | |
|
用配方法解方程x2+x-1=0,配方后所得方程是 A.
|
|
| 6. 难度:中等 | |
|
已知二次函数y=2 A.其图像的开口向下 B.其图像的对称轴为直线x=-3 C.其函数的最小值为1 D.当x<3时,y随x的增大而增大
|
|
| 7. 难度:中等 | |
|
在半径为1的⊙O中,弦AB=1,则 A.
|
|
| 8. 难度:中等 | |
|
如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2
A.20° B.30° C.60° D.70°
|
|
| 9. 难度:中等 | |
|
某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=6米,则旗杆AB的高度为
A.9米 B.9(1+
|
|
| 10. 难度:中等 | |
|
已知二次函数y=ax2+bx+c的图像如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:
(1)ac>0; (2)方程ax2+bx+c=0的两根是x1=-1,x2=3; (3)2a-b=0;(4)当x>1时,y随x的增大而减小;(5)3a+2b+c>0 则以上结论中不正确的有 A.1个 B.2个 C.3个 D.4个
|
|
| 11. 难度:简单 | |
|
cos30°的值为 .
|
|
| 12. 难度:简单 | |
|
正方体的表面积S(cm2)与正方体的棱长a(cm)之间的函数关系式为 .
|
|
| 13. 难度:中等 | |
|
如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,PB=4,OB=6,则tan∠APO的值是 .
|
|
| 14. 难度:中等 | |
|
圆心角为120°,弧长为12π的扇形半径为 .
|
|
| 15. 难度:中等 | |
|
点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图像上两点,则y1与y2的大小关系为y1 y2(填“>”、“<”、“=”).
|
|
| 16. 难度:中等 | |
|
某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 .
|
|
| 17. 难度:中等 | |
|
如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为44,且DE=6,则sin∠ODE=___ .
|
|
| 18. 难度:中等 | |
|
如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移动 秒.
|
|
| 19. 难度:中等 | |
|
(本题满分5分)解方程:x2-6x-7=0.
|
|
| 20. 难度:简单 | |
|
(本题满分5分)计算:2sin60°+cos60°-3tan30°.
|
|
| 21. 难度:中等 | |
|
(本题满分6分)如图,AC是△ABD的高,∠D=45°,∠B=60°,AD=10.求AB的长.
|
|
| 22. 难度:简单 | |
|
(本题满分6分)已知关于x的方程x2-6x+m2-3m=0的一根为2. (1)求5m2-15m-100的值; (2)求方程的另一根.
|
|
| 23. 难度:中等 | |
|
(本题满分6分)已知二次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点. (1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.
|
|
| 24. 难度:简单 | |
|
(本题满分6分)如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.求证:(1)△ADC∽△ABE; (2)BE=CF.
|
|
| 25. 难度:中等 | |
|
(本题满分6分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球后放回,再随机地摸出一个小球,请用列举法(画树状图或列表)求下列事件的概率: (1)两次取得小球的标号相同; (2)两次取得小球的标号的和等于4.
|
|
| 26. 难度:中等 | |
|
(本题满分8分)已知关于x的一元二次方程x2-2 (1)求实数m的最大整数值; (2)在(1)的条件下,方程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.
|
|
| 27. 难度:困难 | |
|
(本题满分9分)如图,折叠矩形ABCD的一边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=
(1)求矩形ABCD的面积; (2)利用尺规作图求作与四边形AEFD各边都相切的⊙O的圆心O(只须保留作图痕迹),并求出⊙O的半径.
|
|
| 28. 难度:中等 | |
|
(本题满分9分)如图,在平面直角坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是
(1)当n=2 (2)设图中阴影部分的面积为S,求S与n之间的函数关系式,并求S的最大值; (3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.
|
|
| 29. 难度:中等 | |
|
(本题满分10分)如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.
(1)求n的值和点A坐标; (2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.
|
|
