| 1. 难度:简单 | |
|
如图,在△ABC中,AD⊥BC于D,E、F分别是AB、AC的中点,当△ABC满足条件__________时,AEDF是菱形.
|
|
| 2. 难度:中等 | |
|
如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是________________.
|
|
| 3. 难度:中等 | |
|
如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于________________.
|
|
| 4. 难度:中等 | |
|
如图,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24.将该梯形折叠,点A恰好与点D重合,BE为折痕,那么AD的长度为_______________.
|
|
| 5. 难度:中等 | |
|
如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的中位线长是________________.
|
|
| 6. 难度:中等 | |
|
如图,△ABC是等边三角形,P是△ABC内一点,PE∥AC交AB于点E,PF∥AB交BC于点F,PD∥BC交AC于点D.已知△ABC的周长是12 cm,则PD+PE+PF=______________ cm.
|
|
| 7. 难度:简单 | |
|
如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,请用割补(旋转图形)的方法求四边形ABCD的面积.
|
|
| 8. 难度:简单 | |
|
如图是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站.甲乘1路车,路线是B—A—E—F;乙乘2路车,路线是B—D—C—F.假设两车速度相同,途中耽误时间相同,那么谁先到达F站?请说明理由.
|
|
