| 1. 难度:中等 | |
如图,已知AB∥CD∥EF,那么下列结论正确的是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 2. 难度:中等 | |
如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③ ;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为( )![]() A.1 B.2 C.3 D.4 |
|
| 3. 难度:中等 | |
如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 |
|
| 4. 难度:中等 | |
|
已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为( ) A.1:2 B.1:4 C.2:1 D.4:1 |
|
| 5. 难度:中等 | |
|
若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为( ) A.1:4 B.1:2 C.2:1 D.1: ![]() |
|
| 6. 难度:中等 | |
|
如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个 |
|
| 7. 难度:中等 | |
|
如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论: (1)DE=1; (2)AB边上的高为 ;(3)△CDE∽△CAB; (4)△CDE的面积与△CAB面积之比为1:4. 其中正确的有( ) ![]() A.1个 B.2个 C.3个 D.4个 |
|
| 8. 难度:中等 | |
如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( )![]() A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON和四边形ABCD都是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 |
|
| 9. 难度:中等 | |
小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为( )![]() A.3米 B.0.3米 C.0.03米 D.0.2米 |
|
| 10. 难度:中等 | |
如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为( )![]() A.2 B. ![]() C.2 ![]() D.4 ![]() |
|
| 11. 难度:中等 | |
如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )![]() A.2cm2 B.4cm2 C.8cm2 D.16cm2 |
|
| 12. 难度:中等 | |
在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )![]() A.9.5 B.10.5 C.11 D.15.5 |
|
| 13. 难度:中等 | |
如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 14. 难度:中等 | |
如图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ABC相似的是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 15. 难度:中等 | |
|
在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为( ) A.8,3 B.8,6 C.4,3 D.4,6 |
|
| 16. 难度:中等 | |
如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )![]() A.12m B.10m C.8m D.7m |
|
| 17. 难度:中等 | |
|
如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是( ) ①∠1=∠A;② ;③∠B+∠2=90°;④BC:AC:AB=3:4:5;⑤AC•BD=AD•CD.![]() A.1 B.2 C.3 D.4 |
|
| 18. 难度:中等 | |
如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为( )![]() A.( , )B.( , )C.( , )D.( , ) |
|
| 19. 难度:中等 | |
美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )![]() A.4cm B.6cm C.8cm D.10cm |
|
| 20. 难度:中等 | |
|
若一个图形的面积为2,那么将与它成中心对称的图形放大为原来的两倍后的图形面积为( ) A.8 B.6 C.4 D.2 |
|
| 21. 难度:中等 | |
如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是( )A.24m B.25m C.28m D.30m |
|
| 22. 难度:中等 | |
如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于( )![]() A.1:3 B.2:3 C. :2D. :3 |
|
| 23. 难度:中等 | |
一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )![]() A.第4张 B.第5张 C.第6张 D.第7张 |
|
| 24. 难度:中等 | |
如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则 等于( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 25. 难度:中等 | |
如图,D、E分别是AB、AC的中点,则S△ADE:S△ABC=( )A.1:2 B.1:3 C.1:4 D.2:3 |
|
| 26. 难度:中等 | |
如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 27. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为( )A. ![]() B. ![]() C. ![]() D.2 |
|
| 28. 难度:中等 | |
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=2,则CF的长为( )![]() A.4 B.4.5 C.5 D.6 |
|
| 29. 难度:中等 | |
如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,DE∥BC,则图中与△ABC相似的三角形的个数为( )![]() A.4个 B.3个 C.2个 D.1个 |
|
| 30. 难度:中等 | |
下列四个三角形中,与图中的三角形相似的是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
| 31. 难度:中等 | |
|
如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3. (1)求 的值;(2)求BC的长.
|
|
| 32. 难度:中等 | |
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.
|
|
| 33. 难度:中等 | |
|
已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D. (1)求证:BC=CD; (2)求证:∠ADE=∠ABD; (3)设AD=2,AE=1,求⊙O直径的长.
|
|
| 34. 难度:中等 | |
|
如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.
|
|
| 35. 难度:中等 | |
|
如图,半圆的直径AB=10,点C在半圆上,BC=6. (1)求弦AC的长; (2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.
|
|
| 36. 难度:中等 | |
|
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.
|
|
