1. 难度:中等 | ||||||||||||||||||||
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
![]() (1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2) (2)请设计出总运费最省的草皮运送方案,并说明理由. |
2. 难度:中等 | |
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m). (1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少? (2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中? ![]() |
3. 难度:中等 | |
在同一平面直角坐标系中有6个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(-2,-3),F(0,-4). (1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系; (2)若将直线EF沿y轴向上平移,当它经过点D时,设此时的直线为l1. ①判断直线l1与⊙P的位置关系,并说明理由; ②再将直线l1绕点D按顺时针方向旋转,当它经过点C时,设此时的直线为l2.求直线l2与⊙P的劣弧CD围成的图形的面积.(结果保留π) ![]() |
4. 难度:中等 | |
如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm. (1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切? (2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域 ![]() |
5. 难度:中等 | |
![]() (1)求∠A的度数; (2)若点F在⊙O上,CF⊥AB,垂足为E,CF= ![]() |
6. 难度:中等 | |
如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2-2mx+3=0的两根,AB=m.试求: (1)⊙O的半径; (2)由PA,PB, ![]() ![]() |
7. 难度:中等 | |
如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N. (1)求证:MN是⊙O的切线; (2)若∠BAC=120°,AB=2,求图中阴影部分的面积. ![]() |
8. 难度:中等 | |
如图,AB是⊙O的直径,∠BAC=45°,AB=BC. (1)求证:BC是⊙O的切线; (2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式. (答案不唯一) ![]() |
9. 难度:中等 | |
如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°. (1)试判断直线CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号) ![]() |
10. 难度:中等 | |
如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,![]() (1)当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请说明理由; (2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN= ![]() ![]() ![]() |
11. 难度:中等 | |
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长. ![]() |
12. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=![]() (1)求劣弧 ![]() (2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线. ![]() |
13. 难度:中等 | |
已知△ABC在平面直角坐标系中的位置如图所示. (1)分别写出图中点A和点C的坐标; (2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′; (3)求点A旋转到点A′所经过的路线长(结果保留π). ![]() |
14. 难度:中等 | |
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c. 阅读理【解析】 (1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周; (2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转 ![]() 实践应用: (1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周; (2)如图3,∠ABC=90°,AB=BC= ![]() 拓展联想: (1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由; (2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数. ![]() |
15. 难度:中等 | |
在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4). (1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标; (2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π). ![]() |
16. 难度:中等 | |
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长. ![]() |
17. 难度:中等 | |
![]() (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
18. 难度:中等 | |
如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦,点E为垂足,已知⊙O的半径为10,sin∠COD=![]() (1)求弦AB的长; (2)CD的长; (3)劣弧AB的长(结果保留三个有效数字,sin53.13°≈0.8,π≈3.142). ![]() |
19. 难度:中等 | |
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针![]() (1)在正方形网格中,作出△AB1C1; (2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长. |
20. 难度:中等 | |
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点, 求证:MB=MC. ![]() (2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). ①画出△OAB向下平移3个单位后的△O1A1B1; ②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π). ![]() |
21. 难度:中等 | |
如图,ABCD是边长为1的正方形,其中![]() ![]() ![]() (1)求点D沿三条圆弧运动到点G所经过的路线长; (2)判断直线GB与DF的位置关系,并说明理由. ![]() |
22. 难度:中等 | |
一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm![]() |
23. 难度:中等 | |
某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题. (1)写出判定扇形相似的一种方法:若______,则两个扇形相似; (2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为______; (3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径. ![]() |
24. 难度:中等 | |
如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点). (1)找出格点A,连接AB,AD使得四边形ABCD为菱形; (2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长. ![]() |
25. 难度:中等 | |
如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长?![]() |
26. 难度:中等 | |
一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走的路径长度是多少?![]() |
27. 难度:中等 | |
如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′. (1)求证:△ADC≌△ADC′; (2)求在旋转过程中点C扫过路径的长.(结果保留π) ![]() |
28. 难度:中等 | |
如图,有一直径是1cm的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB. (1)被剪掉的阴影部分的面积是多少? (2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示). ![]() |
29. 难度:中等 | |
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,求图中阴影部分的面积. ![]() |