相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第2章《二次函数》中考题集(40):2.7 最大面积是多少(解析版)
一、解答题
详细信息
1. 难度:中等
如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
2. 难度:中等
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
详细信息
3. 难度:中等
如图,已知抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+2的图象与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.点M从O点出发,以每秒1个单位长度的速度向B运动,过M作x轴的垂线,交抛物线于点P,交BC于Q.
(1)求点B和点C的坐标;
(2)设当点M运动了x(秒)时,四边形OBPC的面积为S,求S与x的函数关系式,并指出自变量x的取值范围;
(3)在线段BC上是否存在点Q,使得△DBQ成为以BQ为一腰的等腰三角形?若存在,求出点Q的坐标,若不存在,说明理由.

manfen5.com 满分网
详细信息
4. 难度:中等
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网
详细信息
5. 难度:中等
在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.
manfen5.com 满分网
详细信息
6. 难度:中等
如图,直线y=-manfen5.com 满分网x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0).
(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;
(3)有两动点D、E同时从点O出发,其中点D以每秒manfen5.com 满分网个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.
①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S是②中函数S的最大值,那么S=______

manfen5.com 满分网
详细信息
7. 难度:中等
如图,在平面直角坐标系中,二次函数y=ax2+bx-7的图象交x轴于A,B两点,交y轴于点D,点C为抛物线的顶点,且A,C两点的横坐标分别为1和4.
(1)求A,B两点的坐标;
(2)求二次函数的函数表达式;
(3)在(2)的抛物线上,是否存在点P,使得∠BAP=45°?若存在,求出点P的坐标及此时△ABP的面积;若不存在,请说明理由.

manfen5.com 满分网
详细信息
8. 难度:中等
如图,已知抛物线y=-x2+2x+3交轴于A,B两点(点A在点B的左侧),与y轴交于点C
(1)求点A、B、C的坐标;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在轴上是否存在点P,使△ACP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
9. 难度:中等
如图,在直角坐标系中,O为原点,抛物线y=x2+bx+3与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan∠ABO=manfen5.com 满分网,顶点为P.
(1)求抛物线的解析式;
(2)若抛物线向上或向下平移|k|个单位长度后经过点C(-5,6),试求k的值及平移后抛物线的最小值;
(3)设平移后的抛物线与y轴相交于D,顶点为Q,点M是平移的抛物线上的一个动点.请探究:当点M在何位置时,△MBD的面积是△MPQ面积的2倍求出此时点M的坐标.友情提示:抛物线y=ax2+bx+c(a≠0)的对称轴是manfen5.com 满分网,顶点坐标是manfen5.com 满分网

manfen5.com 满分网
详细信息
10. 难度:中等
如图,抛物线y=-x2+2nx+n2-9(n为常数)经过坐标原点和x轴上另一点C,顶点在第一象限.
(1)确定抛物线所对应的函数关系式,并写出顶点坐标;
(2)在四边形OABC内有一矩形MNPQ,点M,N分别在OA,BC上,A点坐标为(2,8)B点坐标为(4,8),点Q,P在x轴上.当MN为多少时,矩形MNPQ的面积最大,最大面积是多少?

manfen5.com 满分网
详细信息
11. 难度:中等
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网
详细信息
12. 难度:中等
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′.
(1)求抛物线l2的函数关系式;
(2)已知原点O,定点D(0,4),l2上的点P与l1上的点P′始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P′为顶点的四边形是平行四边形;
(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30°的直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
manfen5.com 满分网
详细信息
13. 难度:中等
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)当SR=2RP时,计算线段SR的长;
(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,说明理由.

manfen5.com 满分网
详细信息
14. 难度:中等
已知抛物线y=ax2+bx+c经过P(manfen5.com 满分网,3),E(manfen5.com 满分网,0)及原点O(0,0).
(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

manfen5.com 满分网
详细信息
15. 难度:中等
已知抛物线y=ax2+x+2.
(1)当a=-1时,求此抛物线的顶点坐标和对称轴;
(2)若代数式-x2+x+2的值为正整数,求x的值;
(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.
详细信息
16. 难度:中等
如图1,直线y=-x+1与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与轴的正半轴相交于点B.
(1)试探索△AOB能否构成以AO、AB为腰的等腰三角形?若能,请求出点B的坐标;若不能,说说明理由;
(2)若将题中“直线y=-x+1”、“∠A的另一边与轴的正半轴相交于点B”分别改为“直线y=-x+t(t>0)”、“∠A的另一边与轴的负半轴相交于点B”(如图2),其他条件不变,试探索△AOB能否为等腰三角形(只考虑点A在线段CD的延长线上且不包括点D时的情况)?若能,请求出点B的坐标;若不能,请说明理由.
manfen5.com 满分网
详细信息
17. 难度:中等
如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

manfen5.com 满分网
详细信息
18. 难度:中等
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

manfen5.com 满分网
详细信息
19. 难度:中等
如图1,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S′表示矩形NFQC的面积.
(1)S与S′相等吗?请说明理由.
(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?
(3)如图2,连接BE,当AE为何值时,△ABE是等腰三角形.
manfen5.com 满分网
详细信息
20. 难度:中等
如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8manfen5.com 满分网,D为斜边BC的中点.点P由点A出发沿线段AB作匀速运动,P′是P关于AD的对称点;点Q由点D出发沿射线DC方向作匀速运动,且满足四边形QDPP′是平行四边形.设平行四边形QDPP′的面积为y,DQ=x.
(1)求出y关于x的函数解析式;
(2)求当y取最大值时,过点P,A,P′的二次函数解析式;
(3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由.

manfen5.com 满分网
详细信息
21. 难度:中等
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证:△BEF∽△CEG;
(2)求用x表示S的函数表达式,并写出x的取值范围;
(3)当E运动到何处时,S有最大值,最大值为多少?

manfen5.com 满分网
详细信息
22. 难度:中等
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当manfen5.com 满分网时,y最大(小)值=manfen5.com 满分网.)manfen5.com 满分网
详细信息
23. 难度:中等
在平面直角坐标系xOy中,抛物线y=mx2+2manfen5.com 满分网mx+n经过P(manfen5.com 满分网,5),A(0,2)两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;
(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标.

manfen5.com 满分网
详细信息
24. 难度:中等
已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1;
(2)试求a的取值范围;
(3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值.

manfen5.com 满分网
详细信息
25. 难度:中等
在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

manfen5.com 满分网
详细信息
26. 难度:中等
两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x=manfen5.com 满分网时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式.
manfen5.com 满分网
详细信息
27. 难度:中等
如图,以边长为manfen5.com 满分网的正方形ABCD的对角线所在直线建立平面直角坐标系,抛物线y=x2+bx+c经过点B且与直线AB只有一个公共点.
(1)求直线AB的解析式;
(2)求抛物线y=x2+bx+c的解析式;
(3)若点P为(2)中抛物线上一点,过点P作PM⊥x轴于点M,问是否存在这样的点P,使△PMC∽△ADC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
28. 难度:中等
如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

manfen5.com 满分网
详细信息
29. 难度:中等
按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:
(Ⅰ)新数据都在60~100(含60和100)之间;
(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.
(1)若y与x的关系是y=x+p(100-x),请说明:当p=manfen5.com 满分网时,这种变换满足上述两个要求;
(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

manfen5.com 满分网
详细信息
30. 难度:中等
如图,在直角三角形PMN中,∠MPN=90°,PM=PN=6 cm,矩形ABCD的长和宽分别为6 cm和3 cm,C点和P点重合,BC和PN在一条直线上.令Rt△PMN不动,矩形ABCD向右以每秒1 cm的速度移动,直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重合部分的面积为y cm2
(1)求y与x之间的函数关系式;
(2)求重合部分面积的最大值.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.