相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版)
一、填空题
详细信息
1. 难度:中等
自由下落物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t2.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是     秒.
详细信息
2. 难度:中等
“中山桥”是位于兰州市中心、横跨黄河之上的一座百年老桥.如图1,桥上有五个拱形桥架紧密相联,每个桥架的内部有一个水平横梁和八个垂直于横梁的立柱,气势雄伟,素有“天下黄河第一桥”之称,如图2,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=    米.
manfen5.com 满分网
详细信息
3. 难度:中等
某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-manfen5.com 满分网x2,当涵洞水面宽AB为12米时,水面到桥拱顶点O的距离为    米.
manfen5.com 满分网
详细信息
4. 难度:中等
某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:
定价(元)100110120130140150
销量(个)801001101008060
为获得最大利润,销售商应将该品牌电饭锅定价为    元.
详细信息
5. 难度:中等
金华商店门前和店内MP4柜台前分别横排着6块灯箱广告牌,现决定在这两排广告牌中共拆除8块,以增加顾客流通量,已知进入店内顾客流通增加量与前排广告牌拆除块数成正比,MP4柜台顾客流通增加量和店内顾客流通增加量与柜前广告牌拆除块数之积成正比,要使MP4柜台顾客流通增加量最大,则前后两排各拆除广告牌    块.
详细信息
6. 难度:中等
用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为    m2
二、解答题
详细信息
7. 难度:中等
近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70.
(1)根据图象,求y与x之间的函数解析式;
(2)设该销售公司一天销售这种型号电缆线的收入为w元.
①试用含x的代数式表示w;
②试问:当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高,最高是多少元?

manfen5.com 满分网
详细信息
8. 难度:中等
为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:
树苗每棵树苗批发价格(元)两年后每棵树苗对空气的净化指数
杨树30.4
丁香树20.1
柳树p0.2
信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.
信息二:如下表:设购买杨树、柳树分别为x株、y株.
(1)写出y与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当每株柳树的批发价p等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?
(3)当每株柳树批发价p(元)与购买数量y(株)之间存在关系p=3-0.005y时,求购买树苗的总费用w(元)与购买杨树数量x(株)之间的函数关系式?(不要求写出自变量的取值范围)
详细信息
9. 难度:中等
如图,直角△ABC中,∠C=90°,manfen5.com 满分网manfen5.com 满分网,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

manfen5.com 满分网
详细信息
10. 难度:中等
如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以manfen5.com 满分网cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.
(1)用含x的代数式表示EP;
(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;
(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.

manfen5.com 满分网
详细信息
11. 难度:中等
如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF
(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;
(2)求manfen5.com 满分网的最小值;
(3)当manfen5.com 满分网的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m,n,k的取值是否有关?请说明理由.
manfen5.com 满分网
详细信息
12. 难度:中等
在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

manfen5.com 满分网
详细信息
13. 难度:中等
如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

manfen5.com 满分网
详细信息
14. 难度:中等
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网
详细信息
15. 难度:中等
自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

manfen5.com 满分网
详细信息
16. 难度:中等
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
详细信息
17. 难度:中等
如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的manfen5.com 满分网?若存在,求出点T的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
18. 难度:中等
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
(1)△EFG的边长是______(用含有x的代数式表示),当x=2时,点G的位置在______
(2)若△EFG与梯形ABCD重叠部分面积是y,求:
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
(3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值.manfen5.com 满分网
详细信息
19. 难度:中等
如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=manfen5.com 满分网,要使△DEF为等腰三角形,m的值应为多少?

manfen5.com 满分网
详细信息
20. 难度:中等
如图,在梯形ABCD中,AB∥DC,AB=2,DC=10,AD=BC=5,点M、N分别在AD、BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;
(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.

manfen5.com 满分网
详细信息
21. 难度:中等
如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证:manfen5.com 满分网
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

manfen5.com 满分网
详细信息
22. 难度:中等
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.

manfen5.com 满分网
详细信息
23. 难度:中等
如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离manfen5.com 满分网,连接BF,设AP=x.
(1)△ABC的面积等于______
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.

manfen5.com 满分网
详细信息
24. 难度:中等
如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N.
(1)证明:△ADE∽△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

manfen5.com 满分网
详细信息
25. 难度:中等
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.

manfen5.com 满分网
详细信息
26. 难度:中等
如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.
(1)用含有x的代数式表示BF的长.
(2)设四边形DEBG的面积为S,求S与x的函数关系式.
(3)当x为何值时,S有最大值,并求出这个最大值.
[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(-manfen5.com 满分网manfen5.com 满分网)].

manfen5.com 满分网
详细信息
27. 难度:中等
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2manfen5.com 满分网),C(0,2manfen5.com 满分网),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
manfen5.com 满分网
详细信息
28. 难度:中等
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
详细信息
29. 难度:中等
manfen5.com 满分网在边长为6cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.
(1)在运动中,点E,F,G,H所形成的四边形EFGH为( )
A:平行四边形;B:矩形;C:菱形;D:正方形.

(2)四边形EFGH的面积s(cm2)随运动时间t(s)变化的图象大致是( )
manfen5.com 满分网
(3)写出四边形EFGH的面积S(cm2)关于运动时间t(s)变化的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
详细信息
30. 难度:中等
一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B.
(1)求点A,B的坐标,并画出一次函数y=x-3的图象;
(2)求二次函数的解析式及它的最小值.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.