1. 难度:中等 | |
如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称; (2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式. ![]() |
2. 难度:中等 | |
在平面直角坐标系中,有A(2,3)、B(3,2)两点. (1)请再添加一点C,求出图象经过A、B、C三点的函数关系式. (2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由. |
3. 难度:中等 | |
已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6) (1)求二次函数的解析式; (2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围. ![]() |
4. 难度:中等 | |
已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. |
5. 难度:中等 | |
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0). (1)求该二次函数的解析式; (2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标. ![]() |
6. 难度:中等 | |
已知二次函数图象的顶点是(-1,2),且过点![]() (1)求二次函数的表达式,并在图中画出它的图象; (2)求证:对任意实数m,点M(m,-m2)都不在这个二次函数的图象上. ![]() |
7. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象与y轴相交于点(0,-3),并经过点(-2,5),它的对称轴是x=1,如图为函数图象的一部分. (1)求函数解析式,写出函数图象的顶点坐标; (2)在原题图上,画出函数图象的其余部分; (3)如果点P(n,-2n)在上述抛物线上,求n的值. ![]() |
8. 难度:中等 | |
已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示. (1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y=ax2+bx+c当x<0时的图象; (3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0. ![]() |
9. 难度:中等 | |
已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式. |
10. 难度:中等 | |||||||||||||||
已知二次函数y=ax2+bx+c的部分对应值如下表,求这个函数的解析式,并写出其图象的顶点坐标和对称轴.
|
11. 难度:中等 | |
已知一个二次函数的图象经过点(0,0),(1,-3),(2,-8). (1)求这个二次函数的解析式; (2)写出它的对称轴和顶点坐标. |
12. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,-3),并且以x=1为对称轴. (1)求此函数的解析式; (2)作出二次函数的大致图象; (3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由. |
13. 难度:中等 | |
已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点. (1)求这条抛物线的解析式; (2)写出抛物线的开口方向、对称轴和顶点坐标. |
14. 难度:中等 | |
已知抛物线y=ax2+bx+c过点A(0,2)、B(![]() ![]() (1)求a、b、c的值; (2)①这条抛物线上纵坐标为 ![]() ②请写出:函数值y随着x的增大而增大的x的一个范围______. |
15. 难度:中等 | |
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1. (1)在图中画出△A1OB1; (2)求经过A,A1,B1三点的抛物线的解析式. ![]() |
16. 难度:中等 | |
已知二次函数y=x2+4x. (1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标; (2)函数图象与x轴的交点坐标. |
17. 难度:中等 | |
已知抛物线y=x2-2x-3,将y=x2-2x-3用配方法化为y=a(x-h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标. |
18. 难度:中等 | |
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C. (1)求C点坐标及直线BC的解析式; (2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象; (3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为 ![]() ![]() |
19. 难度:中等 | |
![]() ![]() ![]() (1)求经过A,E,D三点的抛物线的表达式; (2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′; (3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由. |