相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版)
一、解答题
详细信息
1. 难度:中等
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

manfen5.com 满分网
详细信息
2. 难度:中等
将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
manfen5.com 满分网
(1)填空:如图1,AC=______
详细信息
3. 难度:中等
如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.
(1)在△ABC中,BC=______,tanB=______
(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.

manfen5.com 满分网
详细信息
4. 难度:中等
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4manfen5.com 满分网,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

manfen5.com 满分网
详细信息
5. 难度:中等
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网
详细信息
6. 难度:中等
已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足manfen5.com 满分网(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=manfen5.com 满分网,且点Q在线段AB上时,设点B、Q之间的距离为x,manfen5.com 满分网,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
manfen5.com 满分网
详细信息
7. 难度:中等
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
详细信息
8. 难度:中等
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画AD∥BC(D为格点),连接CD;
(2)线段CD的长为______
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是______,则它所对应的正弦函数值是______
(4)若E为BC中点,则tan∠CAE的值是______

manfen5.com 满分网
详细信息
9. 难度:中等
如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=manfen5.com 满分网,BC=26.
求:(1)cos∠DAC的值;
(2)线段AD的长.

manfen5.com 满分网
详细信息
10. 难度:中等
附加题:由直角三角形边角关系,可将三角形面积公式变形,得S△ABC=manfen5.com 满分网bc•sin∠A①,即三角形的面积等于两边之长与夹角正弦之积的一半.
如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得manfen5.com 满分网AC•BC•sin(α+β)=manfen5.com 满分网AC•CD•sinα+manfen5.com 满分网BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形边角关系,消去②中的AC、BC、CD吗?不能,说明理由;能,写出解决过程.

manfen5.com 满分网
详细信息
11. 难度:中等
如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C=manfen5.com 满分网,BC=12,求AD的长.

manfen5.com 满分网
详细信息
12. 难度:中等
如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=manfen5.com 满分网
求:(1)点B的坐标;(2)cos∠BAO的值.

manfen5.com 满分网
详细信息
13. 难度:中等
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网
详细信息
14. 难度:中等
如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,AlB1分别交AB、AC于E、F.
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外);
(2)当△BB1D是等腰三角形时,求α;
(3)当α=60°时,求BD的长.

manfen5.com 满分网
详细信息
15. 难度:中等
已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=manfen5.com 满分网
求:(1)线段DC的长;
(2)tan∠EDC的值.

manfen5.com 满分网
详细信息
16. 难度:中等
如图,△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的直角坐标系,并写出A,B,C各点的坐标.

manfen5.com 满分网
详细信息
17. 难度:中等
在矩形纸片ABCD中,AB=3manfen5.com 满分网,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°.
(1)BE的长为______,QF的长为______
(2)四边形PEFH的面积为______

manfen5.com 满分网
详细信息
18. 难度:中等
如图,在Rt△ABC中,∠C=90°,sinB=manfen5.com 满分网,点D在BC边上,∠ADC=45°,DC=6,
求∠BAD的正切值.

manfen5.com 满分网
详细信息
19. 难度:中等
(1)如图1,在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:manfen5.com 满分网=manfen5.com 满分网
(2)在△ABC中,AB=manfen5.com 满分网,AC=manfen5.com 满分网,∠B=45°,问满足这样的△ABC有几个在图2中作出来(不写作法,不述理由)并利用(1)的结论求出∠ACB的大小.
manfen5.com 满分网
详细信息
20. 难度:中等
如图,在△ABC中,AC=15,BC=18,sinC=manfen5.com 满分网,D是AC上一个动点(不运动至点A,C),过D作DE∥BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S1,△BDE的面积为S2,那么x为何值时,S1=2S2

manfen5.com 满分网
详细信息
21. 难度:中等
如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=manfen5.com 满分网,求∠B的度数及边BC、AB的长.

manfen5.com 满分网
详细信息
22. 难度:中等
先阅读短文,再解答短文后面的问题:
在几何学中,通常用点表示位置,用线段的长度表示两点间的距离,用一条射线表示一个方向.
manfen5.com 满分网
在线段的两个端点中(如图),如果我们规定一个顺序:A为始点,B为终点,我们就说线段AB具有射线的AB方向,线段AB叫做有向线段,记作manfen5.com 满分网,线段AB的长度叫做有向线段manfen5.com 满分网的长度(或模),记作manfen5.com 满分网
manfen5.com 满分网
有向线段包含三个要素、始点、方向和长度,知道了有向线段的始点,它的终点就被方向和长度惟一确定.
解答下列问题:
(1)在平面直角坐标系中画出有向线段manfen5.com 满分网(有向线段与x轴的长度单位相同),manfen5.com 满分网manfen5.com 满分网与x轴的正半轴的夹角是45°,且与y轴的正半轴的夹角是45°;
(2)若manfen5.com 满分网的终点B的坐标为(3,manfen5.com 满分网),求它的模及它与x轴的正半轴的夹角a的度数.
详细信息
23. 难度:中等
已知:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若∠B=30°,CD=6,求AB的长.

manfen5.com 满分网
详细信息
24. 难度:中等
根据下列条件,求出Rt△ABC(∠C=90°)中未知的边和锐角.
(1)BC=8,∠B=60度;(2)∠B=45°,AC=manfen5.com 满分网
详细信息
25. 难度:中等
等腰三角形的底边长20 cm,面积为manfen5.com 满分网cm2,求它的各内角.
详细信息
26. 难度:中等
在△ABC中,AB=AC=5,BC=6,求cosB、sinA.
详细信息
27. 难度:中等
如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,BC=30,求AD的长.

manfen5.com 满分网
详细信息
28. 难度:中等
已知在△ABC中,∠C=90°,manfen5.com 满分网manfen5.com 满分网,解这个直角三角形.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.