1. 难度:中等 | |
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1). ①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标; ②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标. ![]() |
2. 难度:中等 | |
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC; ①将△ABC向x轴正方向平移5个单位得△A1B1C1, ②再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明对应字母. ![]() |
3. 难度:中等 | |
如图,梯形ANMB是直角梯形. (1)请在图上拼上一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形; (2)将补上的直角梯形MNPQ以点M为旋转中心,逆时针旋转180°得梯形MN1P1Q1,再向上平移一格得B1M1N2P2. (不要求写作法,但要保留作图痕迹) ![]() |
4. 难度:中等 | |
在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4. (1)试作出△ABC以A为旋转中心、沿逆时针方向旋转90°后的图形△AB1C1; (2)若点B的坐标为(-4,3),试建立合适的直角坐标系,并写出A、C两点的坐标; (3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2、B2、C2三点的坐标. ![]() |
5. 难度:中等 | |
作图题:在下图中,把△ABC向右平移5个方格,再绕点B的对应点顺时针方向旋转90°. (1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由. ![]() |
6. 难度:中等 | |
仔细分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.![]() |
7. 难度:中等 | |
如图,在一个10×10的正方形DEFG网格中有一个△ABC. (1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1; (2)在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C2. ![]() |
8. 难度:中等 | |
在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点). (1)画出△ABC绕点O逆时针旋转90°后的△A′B′C′; (2)求△A′B′C′的面积. ![]() |
9. 难度:中等 | |
已知在平面直角坐标系中,Rt△ABC的位置如图所示(方格小正方形的边长为1). (1)把△ABC绕原点O逆时针方向旋转90°得△A1B1C1,A、B、C的对应点分别为A1、B1、C1.请画出△A1B1C1,并直接写出点A1、B1、C1的坐标:A1______,B1______,C1______; (2)线段AB、A1B1的中点分别为M、N,则△OMN的面积为______平方单位. ![]() |
10. 难度:中等 | |
如图,在正方形网格上有一个△ABC. (1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母); (2)若网格上的最小正方形边长为1,求出△ABC的面积. ![]() |
11. 难度:中等 | |
如图,画出△ABC关于原点O对称的△A1B1C1,并求出点A1、B1、C1的坐标.![]() |
12. 难度:中等 | |
在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(-3,0),B(0,0),C(-3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.![]() |
13. 难度:中等 | |
如图,若将△ABC的绕点C顺时针旋转90°后得到△DEC,则A点的对应点D的坐标是______,B点的对应点E的坐标是______,请画出旋转后的△DEC.(不要求写画法)![]() |
14. 难度:中等 | |
如图,在网格中有一个四边形图案. (1)请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错; (2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1、A2、A3,求四边形AA1A2A3的面积; (3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论. ![]() |
15. 难度:中等 | |
阅读下面材料: 如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置; 如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置; 如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置. 像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. 回答下列问题: ①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置; ②指图中线段BE与DF之间的关系,为什么? ![]() ![]() |
16. 难度:中等 | |
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度. (1)试探究线段BD与线段MF的关系,并简要说明理由; (2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数; (3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少? ![]() ![]() ![]() |
17. 难度:中等 | |
在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角. (1)填空: ①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______); ②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A( ![]() (2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系. ![]() |
18. 难度:中等 | |
(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H. (1)当α=30°时(如图2),求证:AG=DH; (2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由. ![]() |
19. 难度:中等 | |
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况. 研究: (1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明; (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由; (3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明. ![]() |
20. 难度:中等 | |
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.![]() (1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论; (2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由; (3)在(2)的情况下,求ED的长. |
21. 难度:中等 | |
如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,AlB1分别交AB、AC于E、F. (1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外); (2)当△BB1D是等腰三角形时,求α; (3)当α=60°时,求BD的长. ![]() |