| 1. 难度:中等 | |
如图,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是 cm.
|
|
| 2. 难度:中等 | |
|
已知点A(2,m)在直线y=-2x+8上. (1)点A(2,m)向左平移3个单位后的坐标是______;直线y=-2x+8向左平移3个单位后的直线解析式是______; (2)点A(2,m)绕原点顺时针旋转90°所走过的路径长为______; (3)求直线y=-2x+8绕点P(-1,0)顺时针旋转90°后的直线解析式. |
|
| 3. 难度:中等 | |
|
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB. (1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明); (2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.
|
|
| 4. 难度:中等 | |
|
如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称; (2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式. ![]() |
|
| 5. 难度:中等 | |
|
如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M. (1)求点B1的坐标与线段B1C的长; (2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围; (3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法. ![]() ![]() |
|
| 6. 难度:中等 | |
如图,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.![]() (1)操作1:固定△ABC,将三角板沿C⇒B方向平移,使其直角顶点落在BC的中点M,如图2示.探究:三角板沿C⇒B方向平移的距离为______; (2)操作2:在(1)情形下,将三角板绕BC的中点M顺时针方向旋转角度α(0°<α<90°)如图3示.探究:设三角板两直角边分别与AB、AC交于P、Q,观察四边形MPAQ形状的变化,发现其面积始终不变,那么四边形MPAQ的面积S四边形MPAQ=______; (3)在(2)的情形下,连PQ,设BP=x,记△APQ的面积为y,试求y关于x的函数关系式;并求x为何值时,△PQA面积有最大值,最大值是多少? |
|
| 7. 难度:中等 | |
|
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M. (1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH; (2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形; (3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由) ![]() |
|
| 8. 难度:中等 | |
如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.![]() (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由; (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由. |
|
| 9. 难度:中等 | |
|
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可); (2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB; (3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
|
|
| 10. 难度:中等 | |
如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; (3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
|
|
| 11. 难度:中等 | |
|
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG. (1)观察猜想BE与DG之间的大小关系,并证明你的结论; (2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.
|
|
| 12. 难度:中等 | |
|
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE. (1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由. (2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.
|
|
| 13. 难度:中等 | |
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连接AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由; (2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由; (3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积. |
|
| 14. 难度:中等 | |
|
课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0). (1)△A1OB1的面积是______;A1点的坐标为(______);B1点的坐标为(______); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积; (3)在(2)的条件下,△AOB外接圆的半径等于______. ![]() |
|
| 15. 难度:中等 | |
|
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长.
|
|
| 16. 难度:中等 | |
|
已知△ABC在平面直角坐标系中的位置如图所示. (1)分别写出图中点A和点C的坐标; (2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′; (3)求点A旋转到点A′所经过的路线长(结果保留π).
|
|
| 17. 难度:中等 | |
|
在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4). (1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标; (2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).
|
|
| 18. 难度:中等 | |
|
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
|
|
| 19. 难度:中等 | |
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)(1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
|
| 20. 难度:中等 | |
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针 方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1; (2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长. |
|
| 21. 难度:中等 | |
|
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点, 求证:MB=MC. ![]() (2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). ①画出△OAB向下平移3个单位后的△O1A1B1; ②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).
|
|
| 22. 难度:中等 | |
|
如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点). (1)找出格点A,连接AB,AD使得四边形ABCD为菱形; (2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.
|
|
| 23. 难度:中等 | |
|
如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′. (1)求证:△ADC≌△ADC′; (2)求在旋转过程中点C扫过路径的长.(结果保留π)
|
|
| 24. 难度:中等 | |
|
如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4. (1)画出△OAB绕原点O顺时针旋转90°后得到的三角形; (2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积). ![]() |
|
| 25. 难度:中等 | |
|
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上. (1)画出△ABO绕点O逆时针旋转90°后得到的三角形; (2)求△ABO在上述旋转过程中所扫过的面积.
|
|
| 26. 难度:中等 | |
|
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC. (1)请你用尺规在所给的网格中画出线段AC及点B经过的路径; (2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______; (3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______; (4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______.
|
|
| 27. 难度:中等 | |
|
如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn (1)写出点M5的坐标; (2)求△M5OM6的周长; (3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.
|
|
| 28. 难度:中等 | |
如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.![]() (1)线段OA1的长是______,∠AOB1的度数是______; (2)连接AA1,求证:四边形OAA1B1是平行四边形; (3)求四边形OAA1B1的面积. |
|
| 29. 难度:中等 | |
|
如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD. (1)求证:四边形AFCD是菱形; (2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?
|
|
| 30. 难度:中等 | |
|
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F. (1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明. ![]() |
|
