1. 难度:中等 | |
已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示). (1)求角α; (2)说明四边形EBCD是等腰梯形. ![]() |
2. 难度:中等 | |
课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0). (1)△A1OB1的面积是______;A1点的坐标为(______);B1点的坐标为(______); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积; (3)在(2)的条件下,△AOB外接圆的半径等于______. ![]() |
3. 难度:中等 | |
如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为![]() (1)画出旋转后的Rt△ADE; (2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度; (3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由. ![]() |
4. 难度:中等 | |
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕![]() (1)求证:EF=PF; (2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么? |
5. 难度:中等 | |
如图所示,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上. (1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1; (2)求旋转过程中动点B所经过的路径长(结果保留π). ![]() |
6. 难度:中等 | |
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长. ![]() |
7. 难度:中等 | |
如图所示,在平面直角坐标系中,梯形ABCD的顶点坐标分别为:A(2,-2),B(3,-2),C(5,0),D(1,0),将梯形ABCD绕点D逆时针旋转90°得到梯形A1B1C1D. (1)在平面直角坐标系中画出梯形A1B1C1D, 则A1的坐标为______, B1的坐标为______, C1的坐标为______; (2)点C旋转到点C1的路线长为______(结果保留π) ![]() |
8. 难度:中等 | |
如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动. (1)请在图1中画出光点P经过的路径; (2)求光点P经过的路径总长(结果保留π). ![]() |
9. 难度:中等 | |
如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′. (1)画出旋转后的△OA′B′,并求点B′的坐标; (2)求在旋转过程中,点A所经过的路径 ![]() ![]() |
10. 难度:中等 | |
已知△ABC在平面直角坐标系中的位置如图所示. (1)分别写出图中点A和点C的坐标; (2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′; (3)求点A旋转到点A′所经过的路线长(结果保留π). ![]() |
11. 难度:中等 | |
在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4). (1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标; (2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π). ![]() |
12. 难度:中等 | |
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长. ![]() |
13. 难度:中等 | |
![]() (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
14. 难度:中等 | |
如图,在正三角形网格中,每一个小三角形都是边长为1的正三角形,解答下列问题: (1)网格中每个小三角形的面积为______; (2)将顶点在格点上的四边形ABOC绕点O顺时针旋转120°两次,画出所得到的两个图形,并写出点A所经过的路线为______.(结果保留π). ![]() |
15. 难度:中等 | |
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针![]() (1)在正方形网格中,作出△AB1C1; (2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长. |
16. 难度:中等 | |
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点, 求证:MB=MC. ![]() (2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). ①画出△OAB向下平移3个单位后的△O1A1B1; ②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π). ![]() |
17. 难度:中等 | |
如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O. (1)在旋转过程中,点B所经过的路径长是多少? (2)分别求出点A1,B1的坐标; (3)连接BB1交A1O于点M,求M的坐标. ![]() |
18. 难度:中等 | |
如图,在平面直角坐标系xoy中,直角梯形OABC,BC∥AO,A(-2,0),B(-1,1),将直角梯.形OABC绕点O顺时针旋转90°后,点A、B、C分别落在点A′、B′、C′处.请你解答下列问题: (1)在如图直角坐标系xOy中画出旋转后的梯形O′A′B′C′; (2)求点A旋转到A′所经过的弧形路线长. ![]() |
19. 难度:中等 | |
如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处. (1)请在图中画出△COD; (2)求点A旋转过程中所经过的路程(精确到0.1); (3)求直线BC的解析式. ![]() |
20. 难度:中等 | |
如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合. (1)请直接写出n的值; (2)若BC= ![]() ![]() |
21. 难度:中等 | |
如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4. (1)画出△OAB绕原点O顺时针旋转90°后得到的三角形; (2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积). ![]() |
22. 难度:中等 | |
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1. (1)在正方形网格中,作出△AB1C1;(不要求写作法) (2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π). ![]() |
23. 难度:中等 | |
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上. (1)画出△ABO绕点O逆时针旋转90°后得到的三角形; (2)求△ABO在上述旋转过程中所扫过的面积. ![]() |
24. 难度:中等 | |
已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长; (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. ![]() |
25. 难度:中等 | |
如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为![]() ![]() (1)求矩形A′BC′D′的对角线A′C′的长; (2)求 ![]() (3)求图中 ![]() (4)求图中 ![]() ![]() |
26. 难度:中等 | |
我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠. (1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形; (2)若△A是正三角形,你认为通过复制能形成的正多边形是______; (3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由; (4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由. ![]() |
27. 难度:中等 | |
(1)计算:![]() ![]() (2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是______;在前16个图案中有______个 ![]() ![]() |
28. 难度:中等 | |
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD. (1)求证:△ABC≌△ADE; (2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小. ![]() |
29. 难度:中等 | |
在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1)图中格点△A′B′C′是由格点△ABC通过怎样变换得到的? (2)如图建立直角坐标系后,点A的坐标为(-5,2),点B的坐标为(-5,0),请求出过A点的正比例函数的解析式,并写出图中格点△DEF各顶点的坐标. ![]() |
30. 难度:中等 | |
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F. (1)如图2,当BP=BA时,∠EBF=______°,猜想∠QFC=______°; (2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明; (3)已知线段AB=2 ![]() ![]() |