1. 难度:中等 | |
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形 (1)求这个扇形的面积(结果保留π) (2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由 (3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由. ![]() |
2. 难度:中等 | |
如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和弧ED所围成图形的面积.(阴影部分) ![]() |
3. 难度:中等 | |
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3 (1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______; (2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式; (3)当正方形有顶点恰好落在 ![]() ![]() |
4. 难度:中等 | |
如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC. (1)求这个扇形的面积; (2)若将扇形BAC围成一个圆锥的侧面,这个圆锥的底面直径是多少?能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由. ![]() |
5. 难度:中等 | |
铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗? (1)请说明方案一不可行的理由; (2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由. ![]() |
6. 难度:中等 | |
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π)![]() |
7. 难度:中等 | |
如图是某工件的三视图,求此工件的全面积.![]() |
8. 难度:中等 | |
下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).![]() |
9. 难度:中等 | |
已知扇形的圆心角为120°,面积为300πcm2. (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? |
10. 难度:中等 | |
已知圆锥的底面半径为r=20cm,高h=![]() ![]() |
11. 难度:中等 | |
在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18cm,母线长为36cm,请你计算制作一个这样的圆锥帽需用纸板的面积.(精确到个位)![]() |
12. 难度:中等 | |
小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角是多少度制成的?圆锥模型的全面积是多少?![]() |
13. 难度:中等 | |
高晗和吴逸君两同学合作,将半径为1m、圆心角为90°的扇形薄铁板围成一个圆锥筒,在计算圆锥的容积(接缝忽略不计)时,吴逸君认为圆锥的高就等于扇形的圆心O到弦AB的距离OC(如图),高晗说这样计算不正确.你同意谁的说法?把正确的计算过程写出来.![]() |
14. 难度:中等 | |
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A,B,C请在网格图中进行下列操作: (1)请在图中确定该圆弧所在圆的圆心D的位置,D点坐标为______; (2)连接AD,CD,则⊙D的半径为______(结果保留根号),扇形DAC的圆心角度数为______; (3)若扇形DAC是某一个圆锥的侧面展开图,则该圆锥的底面半径为______(结果保留根号). ![]() |
15. 难度:中等 | |
如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若![]() ![]() (1)求⊙O的半径; (2)求这个圆柱形木块的表面积.(结果可保留π和根号) ![]() |
16. 难度:中等 | |
课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.![]() |
17. 难度:中等 | |
从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,如图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,如图乙.那么该两层卫生纸的厚度为多少cm?(π取3.14,结果精确到0.001cm)![]() |
18. 难度:中等 | |
如图是一个几何体的三视图. (1)写出这个几何体的名称; (2)根据所示数据计算这个几何体的表面积; (3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程. ![]() |
19. 难度:中等 | |
![]() |
20. 难度:中等 | |
下图是某几何体的展开图. (1)这个几何体的名称是______; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π取3.14) ![]() |