| 1. 难度:中等 | |
|
已知二次函数y=-2x2,怎样平移这个函数的图象,才能使它经过(0,1)和(1,6)两点?写出平移后的函数解析式. |
|
| 2. 难度:中等 | |
|
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根. (1)求x1,x2的值; (2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值. |
|
| 3. 难度:中等 | |
|
如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少? (2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长; (3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
|
|
| 4. 难度:中等 | |
|
已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、B两点. (1)试确定此二次函数的解析式; (2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由. |
|
| 5. 难度:中等 | |
|
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB. (1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明); (2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.
|
|
| 6. 难度:中等 | |
|
已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式. |
|
| 7. 难度:中等 | |
|
推理运算:二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0). (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标; (3)填空:把二次函数的图象沿坐标轴方向最少平移______个单位,使得该图象的顶点在原点. |
|
| 8. 难度:中等 | |
|
一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B. (1)求点A,B的坐标,并画出一次函数y=x-3的图象; (2)求二次函数的解析式及它的最小值. |
|
| 9. 难度:中等 | |||||||||||||||||||
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
(2)当x为何值时,y有最小值,最小值是多少? (3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小. |
|||||||||||||||||||
| 10. 难度:中等 | |
|
如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称; (2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式. ![]() |
|
| 11. 难度:中等 | |
|
已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. |
|
| 12. 难度:中等 | |
|
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0). (1)求该二次函数的解析式; (2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
|
|
| 13. 难度:中等 | |
已知二次函数图象的顶点是(-1,2),且过点 .(1)求二次函数的表达式,并在图中画出它的图象; (2)求证:对任意实数m,点M(m,-m2)都不在这个二次函数的图象上.
|
|
| 14. 难度:中等 | |
|
二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC. (1)求C的坐标; (2)求二次函数的解析式,并求出函数最大值.
|
|
| 15. 难度:中等 | |
|
已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示. (1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y=ax2+bx+c当x<0时的图象; (3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.
|
|
| 16. 难度:中等 | |
|
已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式. |
|
| 17. 难度:中等 | |
|
已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点. (1)求这条抛物线的解析式; (2)写出抛物线的开口方向、对称轴和顶点坐标. |
|
| 18. 难度:中等 | |
|
有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4. (1)求此二次函数的解析式; (2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围. ![]() |
|
| 19. 难度:中等 | |
已知二次函数y= x2+bx+c的图象经过点A(c,-2),![]() 求证:这个二次函数图象的对称轴是x=3.题目中的矩形方框部分是一段被墨水污染了无法辨认的字. (1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由; (2)请你根据已有的信息,在原题中的矩形方框中,添加一个适当的条件,把原题补充完整. |
|
| 20. 难度:中等 | |
|
已知函数y=x2+bx-1的图象经过点(3,2) (1)求这个函数的解析式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x>0时,求使y≥2的x的取值范围.
|
|
| 21. 难度:中等 | |
|
如图二次函数y=ax2+bx+c的图象经过A、B、C三点. (1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式; (2)求此抛物线的顶点坐标和对称轴; (3)观察图象,当x取何值时,y<0,y=0,y>0. ![]() |
|
| 22. 难度:中等 | |
|
已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m). (1)求抛物线的解析式; (2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象. |
|
| 23. 难度:中等 | |
|
已知一个二次函数的图象经过点(1,-1),(0,1),(-1,13),求这个二次函数的解析式. |
|
| 24. 难度:中等 | |
|
已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(-1,5),求此二次函数图象的关系式. |
|
| 25. 难度:中等 | |
|
已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5). (1)求m的值,并写出二次函数的解析式; (2)求出二次函数图象的顶点坐标和对称轴. |
|
| 26. 难度:中等 | |
|
已知抛物线的顶点坐标为M(1,-2),且经过点N(2,3),求此二次函数的解析式. |
|
| 27. 难度:中等 | |
|
已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E,F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE,得AE=______; (2)求y与x之间的函数关系式,并求出x的取值范围; (3)设四边形DECF的面积为S,求出S的最大值.
|
|
| 28. 难度:中等 | |
如图,矩形ABCD的长,宽分别为 和1,且OB=1,点E( ,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式; (2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′; (3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由. |
|
