1. 难度:中等 | |
如图1,直线y=-x+1与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与轴的正半轴相交于点B. (1)试探索△AOB能否构成以AO、AB为腰的等腰三角形?若能,请求出点B的坐标;若不能,说说明理由; (2)若将题中“直线y=-x+1”、“∠A的另一边与轴的正半轴相交于点B”分别改为“直线y=-x+t(t>0)”、“∠A的另一边与轴的负半轴相交于点B”(如图2),其他条件不变,试探索△AOB能否为等腰三角形(只考虑点A在线段CD的延长线上且不包括点D时的情况)?若能,请求出点B的坐标;若不能,请说明理由. ![]() |
2. 难度:中等 | |
如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6). (1)求此二次函数的解析式; (2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标; (3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标. ![]() |
3. 难度:中等 | |
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12). (1)求此二次函数的表达式; (2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由; (3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围. ![]() |
4. 难度:中等 | |
如图1,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S′表示矩形NFQC的面积. (1)S与S′相等吗?请说明理由. (2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少? (3)如图2,连接BE,当AE为何值时,△ABE是等腰三角形. ![]() |
5. 难度:中等 | |
如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8![]() (1)求出y关于x的函数解析式; (2)求当y取最大值时,过点P,A,P′的二次函数解析式; (3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由. ![]() |
6. 难度:中等 | |
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S. (1)求证:△BEF∽△CEG; (2)求用x表示S的函数表达式,并写出x的取值范围; (3)当E运动到何处时,S有最大值,最大值为多少? ![]() |
7. 难度:中等 | |
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2). (1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围) (2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由; (3)若y与x的函数图象如图②所示,求此时h的值. (参考公式:二次函数y=ax2+bx+c,当 ![]() ![]() ![]() |
8. 难度:中等 | |
在平面直角坐标系xOy中,抛物线y=mx2+2![]() ![]() (1)求此抛物线的解析式; (2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式; (3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标. ![]() |
9. 难度:中等 | |
已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0. (1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1; (2)试求a的取值范围; (3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值. ![]() |
10. 难度:中等 | |
在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上; (4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点. ![]() |
11. 难度:中等 | |
两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y. (1)如图2,求当x= ![]() (2)如图3,当点E移动到AB上时,求x、y的值; (3)求y与x之间的函数关系式. ![]() |
12. 难度:中等 | |
如图,以边长为![]() (1)求直线AB的解析式; (2)求抛物线y=x2+bx+c的解析式; (3)若点P为(2)中抛物线上一点,过点P作PM⊥x轴于点M,问是否存在这样的点P,使△PMC∽△ADC?若存在,求出点P的坐标;若不存在,请说明理由. ![]() |
13. 难度:中等 | |
如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1. (1)求二次函数的解析式和直线DC的函数关系式; (2)求△ABC的面积. ![]() |
14. 难度:中等 | |
按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求: (Ⅰ)新数据都在60~100(含60和100)之间; (Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大. (1)若y与x的关系是y=x+p(100-x),请说明:当p= ![]() (2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) ![]() |
15. 难度:中等 | |
如图,在直角三角形PMN中,∠MPN=90°,PM=PN=6 cm,矩形ABCD的长和宽分别为6 cm和3 cm,C点和P点重合,BC和PN在一条直线上.令Rt△PMN不动,矩形ABCD向右以每秒1 cm的速度移动,直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重合部分的面积为y cm2. (1)求y与x之间的函数关系式; (2)求重合部分面积的最大值. ![]() |
16. 难度:中等 | |
已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点,A(x1,0),B(x2,0)(x1<x2),与y轴交于点C,且AB=6. (1)求抛物线与直线BC的解析式; (2)在所给出的直角坐标系中作出抛物线的图象. ![]() |
17. 难度:中等 | |
如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D. (1)求l2的解析式; (2)求证:点D一定在l2上; (3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值. ![]() |
18. 难度:中等 | |
如图:已知抛物线y=![]() ![]() (1)求A,B,C三点的坐标; (2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围; (3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM= ![]() ![]() |
19. 难度:中等 | |
如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0). (1)求抛物线的对称轴及点A的坐标; (2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论; (3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式. ![]() |
20. 难度:中等 | |
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点![]() (1)求这个抛物线的解析式; (2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标. |
21. 难度:中等 | |
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P. (1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想; (2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; (3)对于(2)中的结论是否存在这样的x的值使得y= ![]() ![]() |
22. 难度:中等 | |
在平面直角坐标系内有两点A(-2,0),B(![]() (1)求b与C的坐标; (2)连接AC,求证:△AOC∽△COB; (3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式; (4)在抛物线上是否存在一点P(不与C重合),使得S△ABP=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由. ![]() |
23. 难度:中等 | |
已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点. (1)求a,b的值; (2)分别求出直线AC和BC的解析式; (3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. ![]() |
24. 难度:中等 | |
如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E. (1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标; (2)求经过C、E1、B三点的抛物线的函数表达式; (3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由. ![]() |
25. 难度:中等 | |
如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE. (1)当CD=1时,求点E的坐标; (2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由. ![]() |
26. 难度:中等 | |
![]() ![]() (1)求A、B、C的坐标; (2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC: ①求E点坐标; ②试判断四边形AEBC的形状,并说明理由; (3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由. |
27. 难度:中等 | |
如图,直线y=-![]() (1)求点D的坐标. (2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么? (3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由. ![]() |
28. 难度:中等 | |
(附加题)已知抛物线y=x2+kx+b经过点P(2,-3),Q(-1,0). (1)求抛物线的解析式; (2)设抛物线顶点为N,与y轴交点为A.求sin∠AON的值; (3)设抛物线与x轴的另一个交点为M,求四边形OANM的面积. ![]() |
29. 难度:中等 | |
如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0). (1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看; (2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来; (3)请设法求出tan∠DAC的值. ![]() |
30. 难度:中等 | |
如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M. (1)求k的值; (2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由. ![]() |