1. 难度:中等 | |
如图,在平面直角坐标系xOy中,O为原点,点A、C的坐标分别为(2,0)、(1,![]() ![]() (1)求证:四边形ABCO是平行四边形; (2)求a的值并说明点B在抛物线上; (3)若点P是线段OA上一点,且∠APD=∠OAB,求点P的坐标; (4)若点P是x轴上一点,以P、A、D为顶点作平行四边形,该平行四边形的另一顶点在y轴上,写出点P的坐标. ![]() |
2. 难度:中等 | |
关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方. (1)求此抛物线的解析式,并在下面建立直角坐标系画出函数的草图; (2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直于x轴于点B,再过点A作x轴的平行线交抛物线于点D,过点D作DC垂直于x轴于点C,得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式; (3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形?若能,请求出此时正方形的周长;若不能,请说明理由. |
3. 难度:中等 | |
如图,抛物线y=x2-2x-3与x轴分别交于A,B两点. (1)求A,B两点的坐标; (2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由) ![]() |
4. 难度:中等 | |
已知抛物线y=x2+4x+m(m为常数)经过点(0,4) (1)求m的值; (2)将该抛物线先向右、再向下平移得到另一条抛物线.已知这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为l1)关于y轴对称;它所对应的函数的最小值为-8. ①试求平移后的抛物线所对应的函数关系式; ②试问在平移后的抛物线上是否存在着点P,使得以3为半径的⊙P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被⊙P所截得的弦AB的长度;若不存在,请说明理由. |
5. 难度:中等 | |
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1. (1)求点B的坐标及抛物线y=x2+bx-3的解析式; (2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标; (3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式. ![]() |
6. 难度:中等 | |
如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D. (1)求此抛物线的解析式; (2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标. ![]() |
7. 难度:中等 | |
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题: (1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由; (3)设PQ的长为x(cm),试确定y与x之间的关系式. ![]() |
8. 难度:中等 | |
如图,在平面直角坐标系中,一底角为60°的等腰梯形ABCD的下底AB在x轴的正半轴上,A为坐标原点,点B的坐标为(m,0),对角线BD平分∠ABC,一动点P在BD上以每秒一个单位长度的速度由B→D运动(点P不与B,D重合).过P作PE⊥BD交AB于点E,交线段BC(或CD)于点F. (1)用含m的代数式表示线段AD的长是______; (2)当直线PE经过点C时,它的解析式为y= ![]() ![]() (3)在上述结论下,设动点P运动了t秒时,△AEF的面积为S,求S与t的函数关系式;并写出t为何值时,S取得最大值,最大值是多少? ![]() |
9. 难度:中等 | |
如图,抛物线y=![]() ![]() (1)写出点A,P,A′的坐标(用含m,n的式子表示); (2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分; (3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由. ![]() |
10. 难度:中等 | |
已知:矩形纸片ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,且AE=6厘米,点P是AB边上一动点.按如下操作: 步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1所示); 步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2所示) (1)无论点P在AB边上任何位置,都有PQ______QE(填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作: ①当点P在A点时,PT与MN交于点Q1,Q1点的坐标是(______,______); ②当PA=6厘米时,PT与MN交于点Q2,Q2点的坐标是(______,______); ③当PA=12厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标; (3)点P在运动过程,PT与MN形成一系列的交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么并直接写出该图象的函数表达式.③③ ![]() ![]() |
11. 难度:中等 | |
已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上. (1)求直线BC的解析式; (2)求抛物线y=ax2+bx+c的解析式及点P的坐标; (3)设M是y轴上的一个动点,求PM+CM的取值范围. ![]() |
12. 难度:中等 | |
如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A'DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A'落在AH所在的直线上). (1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式; (2)当x取何值时,y的值最大,最大值是多少? ![]() |
13. 难度:中等 | |
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少? ![]() |
14. 难度:中等 | |
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=![]() (1)求点C的坐标,并画出抛物线的大致图象; (2)点Q(8,m)在抛物线y= ![]() (3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式. ![]() |
15. 难度:中等 | |
实验与探究: (1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______; ![]() (2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示); ![]() 归纳与发现: (3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______ (不必证明);运用与推广: (4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点 ![]() ![]() |
16. 难度:中等 | |
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=![]() ![]() (1)求出B,D两点的坐标; (2)求a的值; (3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值. ![]() |
17. 难度:中等 | |
已知反比例函数![]() (1)求出点Q的坐标; (2)函数y=ax2+bx+ ![]() |
18. 难度:中等 | |
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为![]() (1)求m的值及抛物线的解析式; (2)设∠DBC=α,∠CBE=β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. ![]() |
19. 难度:中等 | |
如图,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3). (1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式; (2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得△POM为直角三角形?若存在,请求出P点的坐标和△POM的面积;若不存在,请说明理由; (3)求边C′O′所在直线的解析式. ![]() |
20. 难度:中等 | |||||||||||||||||||||
如图,已知直线l:y=![]()
(2)求直线l与抛物线C的交点A、B的坐标; (3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值. ![]() |
21. 难度:中等 | |
经过x轴上A(-1,0)、B(3,0)两点的抛物线y=ax2+bx+c交y轴于点C,设抛物线的顶点为D,若以DB为直径的⊙G经过点C,求解下列问题: (1)用含a的代数式表示出C,D的坐标; (2)求抛物线的解析式; (3)如图,当a<0时,能否在抛物线上找到一点Q,使△BDQ为直角三角形?你能写出Q点的坐标吗? ![]() |
22. 难度:中等 | |
如图,抛物线y=![]() (1)求m、n的值; (2)求直线PC的解析式; (3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数: ![]() ![]() ![]() ![]() |
23. 难度:中等 | |
![]() (1)求抛物线的对称轴; (2)写出A,B,C三点的坐标并求抛物线的解析式; (3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由. |
24. 难度:中等 | |
如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MN∥BC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x. (1)用含x的式子表示△AMN的面积(不必写出过程); (2)当x为何值时,点P恰好落在边BC上; (3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少? ![]() |
25. 难度:中等 | |
如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点. (1)试判断b与c的积是正数还是负数,为什么? (2)如果AB=4,且当抛物线y=-x2+bx+c的图象向左平移一个单位时,其顶点在y轴上. ①求原抛物线的表达式; ②设P是线段OB上的一个动点,过点P作PE⊥x轴交原抛物线于E点.问:是否存在P点,使直线BC把△PCE分成面积之比为3:1的两部分?若存在,求出P点的坐标;若不存在,请说明理由. ![]() |
26. 难度:中等 | |
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B. (1)求抛物线的解析式; (2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标; (3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由. ![]() |
27. 难度:中等 | |
如图,已知正方形ABCD与正方形EFGH的边长分别是![]() ![]() ![]() (1)在开始运动前,O1O2=______; (2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______; (3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式. ![]() |
28. 难度:中等 | |
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S. (1)分析与计算:求正方形ODEF的边长; (2)操作与求【解析】 ①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______; A、逐渐增大B、逐渐减少C、先增大后减少D、先减少后增大 ②当正方形ODEF顶点O移动到点C时,求S的值; (3)探究与归纳: 设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式. ![]() |
29. 难度:中等 | |
如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60度. (1)用b表示点E的坐标; (2)求实数b的取值范围; (3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由. ![]() |
30. 难度:中等 | |
已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D. (1)确定A、C、D三点的坐标; (2)求过B、C、D三点的抛物线的解析式; (3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式; (4)当 ![]() |