1. 难度:中等 | |
桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米. (1)求经过A、B、C三点的抛物线的解析式. (2)求柱子AD的高度. ![]() |
2. 难度:中等 | |
某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式; (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式; (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? |
3. 难度:中等 | |
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系. (1)直接写出点M及抛物线顶点P的坐标; (2)求出这条抛物线的函数解析式; (3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少? ![]() |
4. 难度:中等 | |
![]() ![]() (1)求反比例函数的解析式及其自变量的取值范围. (2)求二次函数的解析式及其自变量的取值范围. (3)小明从点B滑水面上点D处时,试求他所滑过的水平距离d. |
5. 难度:中等 | |
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元). (1)求y与x之间的函数关系式; (2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? |
6. 难度:中等 | |
如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB为6m,当水位上升0.5m时: (1)求水面的宽度CD为多少米? (2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行. ①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过? ②若从水面到棚顶的高度为 ![]() ![]() |
7. 难度:中等 | |
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取4 ![]() (3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取 ![]() ![]() |
8. 难度:中等 | |
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-![]() ![]() (1)请写出抛物线的开口方向,顶点坐标,对称轴. (2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式. ![]() |
9. 难度:中等 | |
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(![]() ![]() (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由. |
10. 难度:中等 | |
有一座抛物线型拱桥,其水面宽AB为18米,拱顶O离水面AB的距离OM为8米,货船在水面上的部分的横断面是矩形CDEF,如图建立平面直角坐标系. (1)求此抛物线的解析式; (2)如果限定矩形的长CD为9米,那么矩形的高DE不能超过多少米,才能使船通过拱桥; (3)若设EF=a,请将矩形CDEF的面积S用含a的代数式表示,并指出a的取值范围. ![]() |
11. 难度:中等 | |
如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,24m的中点为原点建立坐标系. ①求此桥拱线所在抛物线的解析式; ②桥边有一浮在水面部分高4m,最宽处12 ![]() ![]() ![]() |
12. 难度:中等 | |
认真审一审,培养你的解决实际问题能力: 某工厂生产的某种产品按质量分为10个档次,第一档次的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润加2元,但一天生产量减少4件. (1)若生产档次的产品一天总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式; (2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次. |
13. 难度:中等 | |
某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示. (1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式; (2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由. ![]() |
14. 难度:中等 | |
某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图所示的二次函数图象(部分)刻画了该公司年初以来累计利润y(万元)与销售时间x(月)之间的函数关系(即x个月累计利润总和y与x之间的关系),根据图象提供的信息解答下列问题: (1)该种软件上市第几个月后开始盈利; (2)求累计利润总和y(万元)与时间x(月)之间的函数关系式; (3)截止到几月末公司累计利润达到30万元; (4)求出该函数图象与y轴的交点坐标,并说明该点的实际意义. ![]() |
15. 难度:中等 | |
我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示. (1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围; (2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围; (3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值. ![]() |
16. 难度:中等 | |
某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h=vt+![]() (1)这种爆竹在地面上点燃后,经过多少时间离地15米? (2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由. |
17. 难度:中等 | |||||||||||||||
蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:
(1)写出上表中表示的市场售价p(元/千克)关于上市时间x(月份)的函数关系式; (2)若图中抛物线过A,B,C点,写出抛物线对应的函数关系式; (3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本) ![]() |
18. 难度:中等 | |||||||||||||
天羽服装厂生产M、N型两种服装,受资金及规模限制,每天最多只能用A种面料68米和B种面料62米生产M、N型两种服装共80套.已知M、N型服装每套所需面料和成本如下表,设每天生产M型服装x套.
(2)经市场调查,生产的M、N型服装有两种销售方案(假设每天生产的服装都能全部售出). 方案Ⅰ:两种型号服装都在本市销售,M型180元/件、N型120元/件; 方案Ⅱ:N型服装在本市销售,120元/件,M型服装批发给H市服装商,其每件的批发价y(元)与批量x(件)之间的关系如图所示. 如果你是厂长,应采用哪种销售方案可使每天获利最大,最大利润是多少?并确定相应的生产方案. ![]() |
19. 难度:中等 | |
善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式; (2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最 ![]() |
20. 难度:中等 | |
某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费-每天的固定支出) (1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元; (2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围); (3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少? |
21. 难度:中等 | |
某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度) (1)若想水池的总容积为36m3,x应等于多少? (2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围; (3)若想使水池的总容积V最大,x应为多少?最大容积是多少? ![]() |
22. 难度:中等 | |
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)当x为何值时,满足条件的绿化带的面积最大. ![]() |
23. 难度:中等 | |
容积率t是指在房地产开发中建筑面积与用地面积之比,即t=![]() (Ⅰ)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积; (Ⅱ)求出图(2)中抛物线段c的函数关系式. ![]() |
24. 难度:中等 | |
某种日记本的专卖柜台,每天柜台的租金,人员工资等固定费用为160元,该日记本每本进价是4元,规定销售单价不得高于8元/本,也不得低于4元/本,调查发现日均销售量y(本)与销售单价x(元)的函数图象如图线段AB. (1)求日均销售量y(本)与销售单价x(元)的函数关系式; (2)当销售单价为多少元时,日均获利最多,获得最多是多少元? ![]() |
25. 难度:中等 | |
用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大并求出S的最大值.![]() |
26. 难度:中等 | |
某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价) (1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式; (2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高? |
27. 难度:中等 | |
武夷山市某茶厂生产某品牌茶叶,它的成本价是每千克180元,售价是每千克230元,年销售量为10 000千克.随着产量增加,为了扩大销售量,增加效益,公司决定拿出一定量的资金做广告.根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分. (1)根据图象提供的信息,求y与x之间的函数关系式; (2)求年利润S(万元)与广告费x(万元)之间的函数关系式;(年利润S=年销售总额-成本费-广告费) (3)问广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多? ![]() |
28. 难度:中等 | |
如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y. (1)求出y关于x的函数关系式,并写出自变量x的取值范围; (2)求出△BDE的面积S与x之间的函数关系式; (3)当x为何值时,△BDE的面积S有最大值,最大值为多少? ![]() |
29. 难度:中等 | |
“中山桥”是位于兰州市中心、横跨黄河之上的一座百年老桥(图1).桥上有五个拱形桥架紧密相联,每个桥架的内部有一个水平横梁和八个垂直于横梁的立柱,气势雄伟,素有“天下黄河第一桥”之称. 如图2,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成,建立如图所示的平面直角坐标系,已知跨度AB=44m,∠A=45°,AC1=4m,D2的坐标为(-13,-1.69),求: (1)抛物线D1OD8的解析式; (2)桥架的拱高OH. ![]() |
30. 难度:中等 | |
明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独-无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系. (1)求拱形抛物线的函数关系式; (2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米) ![]() |