| 1. 难度:中等 | |
|
﹣1的绝对值是( ) A. 1 B. 0 C. ﹣1 D. ±1
|
|
| 2. 难度:中等 | |
|
在下列表述中,不能表示代数式“4a”的意义的是( ) A. 4的a倍 B. a的4倍 C. 4个a相加 D. 4个a相乘
|
|
| 3. 难度:中等 | |
|
等腰三角形的顶角为80°,则它的底角是( ) A. 20° B. 50° C. 60° D. 80°
|
|
| 4. 难度:中等 | |
|
下列运算正确的是( ) A. a3+a3=2a6 B. a6÷a﹣3=a3 C. a3a3=2a3 D. (﹣2a2)3=﹣8a6
|
|
| 5. 难度:中等 | |
|
在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是( ) A.
|
|
| 6. 难度:中等 | |
|
如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )
A. a户最长 B. b户最长 C. c户最长 D. 三户一样长
|
|
| 7. 难度:中等 | |
|
如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是( )
A. 南偏西60° B. 南偏西30° C. 北偏东60° D. 北偏东30°
|
|
| 8. 难度:中等 | |
|
已知(m﹣n)2=8,(m+n)2=2,则m2+n2=( ) A. 10 B. 6 C. 5 D. 3
|
|
| 9. 难度:中等 | |
|
有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:
A. 甲 B. 乙 C. 丙 D. 丁
|
|
| 10. 难度:中等 | |
|
已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是( ) A. 1 B. ﹣1 C.
|
|
| 11. 难度:中等 | |
|
已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
|
|
| 12. 难度:中等 | |
|
某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是( ) A. C.
|
|
| 13. 难度:中等 | |
|
一个正方体有 6 个面.
|
|
| 14. 难度:中等 | |
|
当x=﹣4时,
|
|
| 15. 难度:中等 | |
|
如图是小明用条形统计图记录的某地一星期的降雨量.如果日降雨量在25mm及以上为大雨,那么这个星期下大雨的天数有 5 天.
|
|
| 16. 难度:中等 | |
|
如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是 .
|
|
| 17. 难度:中等 | |
|
计算:sin30°+cos30°•tan60°.
|
|
| 18. 难度:中等 | |
|
化简:
|
|
| 19. 难度:中等 | |
|
解不等式组:
|
|
| 20. 难度:中等 | |
|
如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.
|
|
| 21. 难度:中等 | |
|
有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A1、A2表示一双,用B1、B2表示另一双)放置在卧室地板上.若从这四只拖鞋中随即取出两只,利用列表法(树形图或列表格)表示所有可能出现的结果,并写出恰好配成形同颜色的一双拖鞋的概率.
|
|
| 22. 难度:中等 | |
|
如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、DG. (1)在不添加辅助线时,写出其中的两对全等三角形; (2)证明:BE=DG.
|
|
| 23. 难度:中等 | |
|
如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C. (1)求点C的坐标和反比例函数的解析式; (2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?
|
|
| 24. 难度:中等 | |
|
小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”; 小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).
|
|
| 25. 难度:中等 | |
|
我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普遍身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:
(1)计算这组数据的三个统计量:平均数、中位数、众数; (2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普遍身高”是哪几位男生?并说明理由.
|
|
| 26. 难度:中等 | |
|
如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB.CD相交于点O,B.D两点立于地面,经测量: AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm. (1)求证:AC∥BD; (2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°); (3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由. (参考数据:sin61.9°≈0.882,cos61.9°≈0.471, tan61.9°≈0.553;可使用科学记算器)
|
|
| 27. 难度:中等 | |
|
如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B左边),与y轴交于点C. (1)写出二次函数L1的开口方向、对称轴和顶点坐标; (2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0). ①写出二次函数L2与二次函数L1有关图象的两条相同的性质; ②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.
|
|
| 28. 难度:中等 | |
|
已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作. (1)①折叠后的
②如图2,当折叠后的 ③如图3,当弦AB=2时,求圆心O到弦AB的距离; (2)在图1中,再将纸片⊙O沿弦CD折叠操作. ①如图4,当AB∥CD,折叠后的 ②如图5,当AB与CD不平行,折叠后的
|
|
