相关试题
当前位置:首页 > 高中数学试题 > 用空间向量求平面间的夹角
题型:解答题
难度:中等
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,manfen5.com 满分网,E是线段AB的中点.
(1)求证:PE⊥CD;
(2)求四棱锥P-ABCD的体积;
(3)试问线段PB上是否存在点F,使二面角C-DE-F的余弦值为manfen5.com 满分网?若存在,确定点F的位置;若不存在,说明理由.

manfen5.com 满分网
题型:解答题
难度:困难
如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN∥平面A1ACC1
(2)求二面角N-MC-A的正弦值.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求manfen5.com 满分网的值.

manfen5.com 满分网
题型:解答题
难度:中等
如图,四棱锥P-ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=manfen5.com 满分网,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B-AF-D的正弦值.

manfen5.com 满分网
题型:解答题
难度:中等
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=manfen5.com 满分网,连接CE并延长交AD于F
(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.
题型:解答题
难度:压轴
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,manfen5.com 满分网
(Ⅰ) 证明:A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.
(1)求证:CE∥平面A1BD;
(2)若H为A1B上的动点,当CH与平面A1AB所成最大角的正切值为manfen5.com 满分网时,求平面A1BD与平面ABC所成二面角(锐角)的余弦值.

manfen5.com 满分网
题型:解答题
难度:简单
如图,△BCD是等边三角形,AB=AD,∠BAD=90°,将△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(1)求证:AD⊥AC′;
(2)若M,N分别是BD,C′B的中点,求二面角N-AM-B的余弦值.

manfen5.com 满分网
题型:解答题
难度:中等
已知三棱锥A-BCD及其三视图如图所示.
(I)若DE⊥AB于E,DE⊥AC于F,求证:AC⊥平面DEF;
(Ⅱ)求二面角B-AC-D的大小.

manfen5.com 满分网
题型:解答题
难度:中等
如图,已知△AOB,∠AOB=manfen5.com 满分网,∠BAO=manfen5.com 满分网,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为θ.
(1)当平面COD⊥平面AOB时,求θ的值;
(2)当θ∈[manfen5.com 满分网manfen5.com 满分网]时,求二面角C-OD-B的余弦值的取值范围.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.