相关试题
当前位置:首页 > 高中数学试题 > 用空间向量求直线与平面的夹角
题型:解答题
难度:中等
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E,F分别在BC,AD上,且E为BC中点,EF∥AB.现将四边形ABEF沿EF折起,使二面角A-EF-D等于60°.
(I)设这P为AD的中点,求证:CP∥平面ABEF;
(Ⅱ)求直线AF与平面ACD所成角的正弦值.

manfen5.com 满分网
题型:解答题
难度:困难
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

manfen5.com 满分网
题型:解答题
难度:中等
如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求证:CD⊥平面ADD1A1
(2)若直线AA1与平面AB1C所成角的正弦值为manfen5.com 满分网,求k的值
(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)

manfen5.com 满分网
题型:解答题
难度:困难
等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足manfen5.com 满分网(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C (如图2).
manfen5.com 满分网
(1)求证:A1D丄平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60?若存在,求出PB的长;若不存在,请说明理由.
题型:解答题
难度:中等
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,PD⊥平面ABCD,AD=1,manfen5.com 满分网,BC=4.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求直线AB与平面PDC所成的角;
(Ⅲ)设点E在棱PC上,manfen5.com 满分网,若DE∥平面PAB,求λ的值.

manfen5.com 满分网
题型:解答题
难度:中等
如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=manfen5.com 满分网
(1)证明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱锥A-CBE的体积,当V(x) 取得最大值时,求直线AD与平面ACE所成角的正弦值.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1是棱B1C1的中点.
(I)求证:A1D1⊥平面BB1C1C;
(II)已知线段A1B1上的一点P,满足直线AP与平面A1D1C所成角的正弦值为manfen5.com 满分网的值.

manfen5.com 满分网
题型:解答题
难度:简单
如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D且manfen5.com 满分网
(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)求PA与平面ABCD所成的角的正切值;
(Ⅲ)若AA1=a,当a为何值时,PC∥平面AB1D.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在正四棱锥P-ABCD中,已知manfen5.com 满分网,点M为PA中点,求直线BM与平面PAD所成角的正弦值.

manfen5.com 满分网
题型:选择题
难度:中等
二面角α-MN-β等于45°,A∈MN,P∈α,若∠PAN=45°,则AP与β所成的角是( )
A.30°
B.45°
C.60°
D.90°
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.