相关试题
当前位置:首页 > 高中数学试题 > 向量语言表述线线的垂直、平行关系
题型:解答题
难度:中等
在正四棱锥V-ABCD中,P,Q分别为棱VB,VD的中点,点 M 在边 BC 上,且 BM:BC=1:3,AB=2manfen5.com 满分网,VA=6.
(I )求证CQ丄AP;
(II)求二面角B-AP-M的余弦值.

manfen5.com 满分网
题型:填空题
难度:困难
将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于   
题型:解答题
难度:中等
如图,在四棱锥P-ABCD中,PB⊥平面ABCD,AB⊥AD,AB∥CD,且AB=1,AD=CD=2,E在线段PD上.
(Ⅰ)若E是PD的中点,试证明:AE∥平面PBC;
(Ⅱ)若异面直线BC与PD所成的角为60°,求四棱锥P-ABCD的侧视图的面积.

manfen5.com 满分网
题型:解答题
难度:困难
如图所示,己知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,P点在A1B1上,且满足manfen5.com 满分网manfen5.com 满分网(λ∈R).
(I)证明:PN⊥AM;
(II)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求出该最大角的正切值;
(III)在(II)条件下求P到平而AMN的距离.

manfen5.com 满分网
题型:解答题
难度:简单
如图,底面为平行四边形的四棱柱ABCD-A′B′C′D′,DD′⊥底面ABCD,∠DAB=60°,AB=2AD,DD′=3AD,E、F分别是AB、D′E的中点.
(Ⅰ)求证:DF⊥CE;
(Ⅱ)求二面角A-EF-C的余弦值.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.
(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为manfen5.com 满分网

manfen5.com 满分网
题型:解答题
难度:困难
在三棱锥P-ABC中,PB⊥平面ABC,AB⊥BC,AB=PB=2,BC=2manfen5.com 满分网,E、G分别为PC、PA的中点.
(I)求证:平面BCG⊥平面PAC;
(II)在线段AC上是否存在一点N,使PN⊥BE?证明你的结论.

manfen5.com 满分网
题型:解答题
难度:压轴
manfen5.com 满分网如图1中矩形ABCD中,已知AB=2,manfen5.com 满分网,MN分别为AD和BC的中点,对角线BD与MN交于O点,沿MN把矩形ABNM折起,使平面ABNM与平面MNCD所成角为60°,如图2
(1)求证:BO⊥DO;
(2)求AO与平面BOD所成角的正弦值.
题型:解答题
难度:困难
如图,在长方体ABCD-A1B1C1D1中,manfen5.com 满分网在A1B1上,且A1P=3PB1
(I)求证:PD⊥AD1
(II)求二面角C-DD1-P的大小;
(III)求点B到平面DD1P的距离.

manfen5.com 满分网
题型:解答题
难度:困难
如图,已知三棱柱ABC-A1B1C1的侧棱与底面所成的角为60°,AB=BC,A1A=A1C=2,AB⊥BC,侧面AA1C1C⊥底面ABC.
(1)证明:A1B⊥A1C1
(2)求二面角A-CC1-B的大小;
(3)求经过A1、A、B、C四点的球的表面积.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.